heter_wrapper.cc 11.6 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/fleet/heter_wrapper.h"
30 31 32 33 34 35 36 37 38
#include <algorithm>
#include <utility>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/device_worker.h"
#include "paddle/fluid/framework/io/fs.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/timer.h"
T
Thunderbrook 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#ifdef PADDLE_WITH_PSLIB

namespace paddle {
namespace framework {

std::shared_ptr<HeterWrapper> HeterWrapper::s_instance_ = NULL;
bool HeterWrapper::is_initialized_ = false;

void HeterWrapper::CreateClient2XpuConnection() {
  brpc::ChannelOptions options;
  options.protocol = "baidu_std";
  options.connection_type = "single";
  options.timeout_ms = 2000000;

  xpu_channels_.resize(xpu_list_.size());
  for (size_t i = 0; i < xpu_list_.size(); ++i) {
    VLOG(3) << "channel init: " << xpu_list_[i];
    xpu_channels_[i].reset(new brpc::Channel());
    if (xpu_channels_[i]->Init(xpu_list_[i].c_str(), "", &options) != 0) {
      VLOG(0) << "server channel init fail";
    }
  }
}

void HeterWrapper::RegisterServiceHandler(int cmd, HeterServiceHandler func) {
  service_.RegisterServiceHandler(cmd, func);
}

void HeterWrapper::SetXpuList(const std::vector<std::string>& xpu_list) {
#ifdef PADDLE_WITH_PSLIB
  VLOG(3) << "Going to set xpu list";
  for (auto& x : xpu_list) {
    xpu_list_.push_back(x);
    VLOG(3) << "set xpu list:  " << x << " size: " << xpu_list_.size();
  }
#endif
}

void HeterWrapper::StartXpuService(const std::string& ip, uint32_t port) {
  std::string ip_port = ip + ":" + std::to_string(port);
  VLOG(3) << "xpu server starts at " << ip_port;

  server_.AddService(&service_, brpc::SERVER_DOESNT_OWN_SERVICE);
  brpc::ServerOptions options;
  if (server_.Start(ip_port.c_str(), &options) != 0) {
    VLOG(0) << "xpu server start fail";
  }
}

// void HeterWrapper::SerializeToReq(const std::string& varname,
// Scope* scope, HeterRequest& request) {
//  auto* req_var = request.mutable_vars();

void HeterWrapper::SerializeToReq(const std::string& varname, Scope* scope,
                                  VariableMessage* req_var) {
  Variable* var = scope->FindVar(varname);
  if (var == nullptr) {
    return;
  }
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  req_var->set_varname(varname);
  req_var->set_type(LOD_TENSOR);
  req_var->set_data_type(static_cast<VariableMessage::Type>(tensor->type()));

  for (auto& dim : framework::vectorize(tensor->dims())) {
    req_var->add_dims(dim);
  }
  const framework::LoD lod = tensor->lod();
  if (lod.size() > 0) {
    req_var->set_lod_level(lod.size());
    for (auto& each : lod) {
      VariableMessage::LodData* lod_inner = req_var->add_lod();
      for (auto& d : each) {
        lod_inner->add_lod_data(d);
      }
    }
  }

  auto* req_data = req_var->mutable_data();
  req_data->clear();
  req_data->resize(tensor->numel() * SizeOfType(tensor->type()));
  char* data_ptr = const_cast<char*>(req_data->data());

  if (platform::is_cpu_place(tensor->place())) {
    memcpy(data_ptr, tensor->data<void>(),
           tensor->numel() * SizeOfType(tensor->type()));
W
wanghuancoder 已提交
125
  } else {
T
Thunderbrook 已提交
126
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
127 128 129 130 131
    memory::Copy(platform::CPUPlace(), data_ptr,
                 BOOST_GET_CONST(platform::CUDAPlace, tensor->place()),
                 tensor->data<void>(),
                 tensor->numel() * SizeOfType(tensor->type()), nullptr);
#endif
T
Thunderbrook 已提交
132 133 134 135 136 137 138
#ifdef PADDLE_WITH_XPU
    memory::Copy(platform::CPUPlace(), data_ptr,
                 BOOST_GET_CONST(platform::XPUPlace, tensor->place()),
                 tensor->data<void>(),
                 tensor->numel() * SizeOfType(tensor->type()));
#endif
  }
T
Thunderbrook 已提交
139 140 141 142 143 144 145
}

#ifdef PADDLE_WITH_CUDA
void HeterWrapper::DeSerializeToTensor(Scope* scope,
                                       const VariableMessage& req_var,
                                       platform::Place place,
                                       cudaStream_t stream) {
T
Thunderbrook 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  // const VariableMessage& req_var = request->vars();
  auto* var = scope->FindVar(req_var.varname());
  auto* tensor = var->GetMutable<LoDTensor>();

  std::vector<int> vec_dim;
  for (auto& x : req_var.dims()) {
    vec_dim.push_back(x);
  }
  tensor->Resize(make_ddim(vec_dim));

  LoD lod;
  for (int i = 0; i < req_var.lod_level(); ++i) {
    framework::Vector<size_t> v;
    for (int j = 0; j < req_var.lod(i).lod_data_size(); ++j) {
      v.push_back(req_var.lod(i).lod_data(j));
    }
    lod.push_back(v);
  }
  tensor->set_lod(lod);

  void* tensor_data =
      tensor->mutable_data(place, ToVarType(req_var.data_type()));

#ifdef PADDLE_WITH_CUDA
  memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place), tensor_data,
               platform::CPUPlace(), req_var.data().data(),
               tensor->numel() * SizeOfType(tensor->type()), stream);
T
Thunderbrook 已提交
173
#else
T
Thunderbrook 已提交
174 175 176 177 178 179 180 181
  memcpy(tensor_data, req_var.data().data(),
         tensor->numel() * SizeOfType(tensor->type()));
#endif
}
#endif

// void HeterWrapper::DeSerializeToTensor(Scope* scope,
// const HeterRequest* request) {
T
Thunderbrook 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
void HeterWrapper::DeSerializeToTensor(Scope* scope,
                                       const VariableMessage& req_var,
                                       platform::Place place) {
  // const VariableMessage& req_var = request->vars();
  auto* var = scope->FindVar(req_var.varname());
  auto* tensor = var->GetMutable<LoDTensor>();

  std::vector<int> vec_dim;
  for (auto& x : req_var.dims()) {
    vec_dim.push_back(x);
  }
  tensor->Resize(make_ddim(vec_dim));

  LoD lod;
  for (int i = 0; i < req_var.lod_level(); ++i) {
    framework::Vector<size_t> v;
    for (int j = 0; j < req_var.lod(i).lod_data_size(); ++j) {
      v.push_back(req_var.lod(i).lod_data(j));
    }
    lod.push_back(v);
  }
  tensor->set_lod(lod);

  void* tensor_data =
      tensor->mutable_data(place, ToVarType(req_var.data_type()));

T
Thunderbrook 已提交
208 209
#ifdef PADDLE_WITH_XPU
  memory::Copy(BOOST_GET_CONST(platform::XPUPlace, place), tensor_data,
T
Thunderbrook 已提交
210
               platform::CPUPlace(), req_var.data().data(),
T
Thunderbrook 已提交
211
               tensor->numel() * SizeOfType(tensor->type()));
T
Thunderbrook 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
#else
  memcpy(tensor_data, req_var.data().data(),
         tensor->numel() * SizeOfType(tensor->type()));
#endif
}

framework::proto::VarType::Type HeterWrapper::ToVarType(
    VariableMessage::Type type) {
  switch (type) {
    case VariableMessage::FP32:
      return framework::proto::VarType::FP32;  // NOLINT
    case VariableMessage::FP64:
      return framework::proto::VarType::FP64;  // NOLINT
    case VariableMessage::INT32:
      return framework::proto::VarType::INT32;  // NOLINT
    case VariableMessage::INT64:
      return framework::proto::VarType::INT64;  // NOLINT
    case VariableMessage::BOOL:
      return framework::proto::VarType::BOOL;  // NOLINT
    default:
T
Thunderbrook 已提交
232 233
      PADDLE_THROW(platform::errors::InvalidArgument(
          "ToVarType:Unsupported type %d", type));
T
Thunderbrook 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  }
}

void HeterWrapper::StopXpuService(int num) {
  HeterRequest request;
  HeterResponse response;
  brpc::Controller cntl;
  request.set_cmd(2);
  // for (size_t i = 0; i < xpu_channels_.size(); ++i) {
  HeterService_Stub stub(xpu_channels_[num].get());
  stub.service(&cntl, &request, &response, NULL);
  if (cntl.Failed()) {
    VLOG(0) << "call stop xpu service fail: " << cntl.ErrorText();
  } else {
    VLOG(3) << "call stop xpu service success";
  }
  // }
}

void HeterWrapper::EndPass(Scope* scope, int num) {
  HeterRequest request;
  HeterResponse response;
  brpc::Controller cntl;
  request.set_cmd(1);
  // for (size_t i = 0; i < xpu_channels_.size(); ++i) {
  HeterService_Stub stub(xpu_channels_[num].get());
  stub.service(&cntl, &request, &response, NULL);
  if (cntl.Failed()) {
    VLOG(0) << "call end pass fail: " << cntl.ErrorText();
  } else {
    VLOG(3) << "call end pass success";
    for (int j = 0; j < response.vars_size(); ++j) {
      DeSerializeToTensor(scope, response.vars(j), platform::CPUPlace());
    }
  }
  // }
}

void HeterWrapper::CallRemoteXpu(std::shared_ptr<HeterTask> task,
                                 HeterCpuWorker* worker, int mpi_rank,
                                 std::vector<std::string>& send_vars) {
  HeterRequest request;
  request.set_cmd(0);
  request.set_cur_batch(task->cur_batch_);

  OnHeterRpcDone* done = new OnHeterRpcDone([this, task, worker](void* done) {
W
wanghuancoder 已提交
280
    auto* closure = reinterpret_cast<OnHeterRpcDone*>(done);
T
Thunderbrook 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    if (closure->cntl.Failed()) {
      VLOG(0) << "call xpu fail: " << closure->cntl.ErrorText();
    } else {
      VLOG(3) << "call xpu success";
    }
    // DeSerializeToTensor(task->scope_,
    // closure->response.vars(), platform::CPUPlace());
    for (int i = 0; i < closure->response.vars_size(); ++i) {
      DeSerializeToTensor(task->scope_, closure->response.vars(i),
                          platform::CPUPlace());
    }

    worker->Schedule(task->taskid_);
  });

  //  std::vector<std::string> varnames = {"click", "12345"};
  //  //varnames.push_back(send_var);
  //  //if (send_var == "_generated_var_412") {
  //  varnames.push_back("filter_by_instag_0.tmp_0");
  //  varnames.push_back("filter_by_instag_2.tmp_0");
  //  varnames.push_back("filter_by_instag_0.tmp_1");
  //  varnames.push_back("concat_1.tmp_0");
  // }
  for (auto& varname : send_vars) {
    auto* req_var = request.add_vars();
    SerializeToReq(varname, task->scope_, req_var);
  }

  int num = mpi_rank % xpu_channels_.size();
  HeterService_Stub stub(xpu_channels_[num].get());
  // stub.service(&cntl, &request, &response,
  // brpc::NewCallback(&HeterWrapper::RpcCallBack,
  // response, cntl, worker, task));
  stub.service(&done->cntl, &request, &done->response, done);
}

void HeterWrapper::CallRemoteXpuSync(std::shared_ptr<HeterTask> task,
                                     HeterCpuWorker* worker, int mpi_rank,
                                     std::vector<std::string>& send_vars) {
  HeterRequest request;
  HeterResponse response;
  brpc::Controller cntl;
  request.set_cmd(0);
  request.set_cur_batch(task->cur_batch_);

  // std::vector<std::string> varnames = {"concat_1.tmp_0", "click", "12345"};
  for (auto& varname : send_vars) {
    auto* req_var = request.add_vars();
    SerializeToReq(varname, task->scope_, req_var);
  }

  HeterService_Stub stub(xpu_channels_[0].get());
  stub.service(&cntl, &request, &response, NULL);
  if (cntl.Failed()) {
    VLOG(0) << "call xpu fail: " << cntl.ErrorText();
  } else {
    VLOG(3) << "call xpu success";
    for (int i = 0; i < response.vars_size(); ++i) {
      DeSerializeToTensor(task->scope_, response.vars(i), platform::CPUPlace());
    }
  }
}

}  // end namespace framework
}  // end namespace paddle
#endif