build_strategy.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18 19 20
#include <glog/logging.h>
#include <memory>

#include "paddle/fluid/framework/details/memory_reuse_types.h"
21 22
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
23
#include "paddle/fluid/framework/details/reduce_op_handle.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
25
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/framework/ir/graph_helper.h"
27 28 29 30 31 32
#include "paddle/fluid/framework/ir/graph_viz_pass.h"

namespace paddle {
namespace framework {
namespace details {

33
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
34 35 36
  return (!strategy.enable_sequential_execution_ &&
          strategy.num_trainers_ > 1) ||
         strategy.enable_parallel_graph_;
37 38
}

39 40 41 42
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
S
sneaxiy 已提交
43 44 45 46
    if (strategy_.enable_sequential_execution_) {
      AppendPass("sequential_execution_pass");
    }

X
Xin Pan 已提交
47
    // Add a graph viz pass to record a graph.
48 49 50 51 52 53 54
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass("graph_viz_pass");
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
      viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    }

X
Xin Pan 已提交
55
    // Add op fusion.
56
    if (strategy.fuse_elewise_add_act_ops_) {
X
Xin Pan 已提交
57
      auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass");
X
Xin Pan 已提交
58
      // Add a graph viz pass to record a graph.
59
      if (!strategy.debug_graphviz_path_.empty()) {
X
Xin Pan 已提交
60
        auto viz_pass = AppendPass("graph_viz_pass");
61 62
        const std::string graph_path = string::Sprintf(
            "%s%s", strategy.debug_graphviz_path_.c_str(), "_fused_graph");
X
Xin Pan 已提交
63 64
        viz_pass->Set<std::string>("graph_viz_path",
                                   new std::string(graph_path));
65 66 67
      }
    }

68 69 70 71 72 73 74 75 76 77 78
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE(strategy_.trainer_id_ >= 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0) {
      PADDLE_ENFORCE((unsigned)(strategy_.trainer_id_) <
                         strategy_.trainers_endpoints_.size(),
                     "trainer_id_ < endpoints_ size");
    }
    VLOG(1) << "CollectiveContext:" << context->String();

D
dzhwinter 已提交
79 80 81 82 83 84 85 86
    // NOTE(dzh): memory optimize should be a runtime pass.
    // However, after multi_devices_pass, VarHandle, OpHandle is
    // the de-fact IR, any reuse on Graph is meaningless.
    // A side-effect of that, memory optimize cannot forsee the fetched vars
    // , so fetchlist should be set persistable before call the Run interface.
    if (strategy.memory_optimize_) {
      auto analysis_var_pass = AppendPass("analysis_var_pass");
    }
87 88 89 90
    // Convert graph to run on multi-devices.
    auto multi_devices_pass = AppendPass("multi_devices_pass");
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
91 92
    multi_devices_pass->Set<int>("num_trainers",
                                 new int(strategy_.num_trainers_));
93

X
Xin Pan 已提交
94
    // Add a graph print pass to record a graph with device info.
95 96
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
D
dzhwinter 已提交
97 98 99 100 101
      const std::string graph_path =
          string::Sprintf("%s%s", strategy_.debug_graphviz_path_.c_str(),
                          "_multi_devices_graph");
      multi_devices_print_pass->Set<std::string>(kGraphvizPath,
                                                 new std::string(graph_path));
102 103 104 105 106 107
      multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
          "graph_printer", new details::GraphvizSSAGraphPrinter);
    }

    // Verify that the graph is correct for multi-device executor.
    AppendPass("multi_devices_check_pass");
S
sneaxiy 已提交
108

109 110 111 112
    if (SeqOnlyAllReduceOps(strategy)) {
      AppendPass("all_reduce_deps_pass");
    }

S
sneaxiy 已提交
113 114 115
    if (strategy_.remove_unnecessary_lock_) {
      AppendPass("modify_op_lock_and_record_event_pass");
    }
116 117 118 119 120 121
  }

 private:
  BuildStrategy strategy_;
};

122
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
123 124
    bool finalize_strategy) const {
  if (is_finalized_) {
125 126
    return pass_builder_;
  }
127
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
128 129
  if (finalize_strategy) {
    is_finalized_ = true;
130
  }
X
fix  
Xin Pan 已提交
131
  return pass_builder_;
132 133 134 135
}

std::unique_ptr<ir::Graph> BuildStrategy::Apply(
    const ProgramDesc &main_program, const std::vector<platform::Place> &places,
136
    const std::string &loss_var_name, const std::vector<Scope *> &local_scopes,
P
peizhilin 已提交
137
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
138 139 140 141
    const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const {
#else
    const bool use_cuda) const {
#endif
142 143
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
144 145 146 147 148 149 150 151 152 153 154

  std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
    if (pass->Type() == "multi_devices_pass") {
      pass->Erase("places");
      pass->SetNotOwned<const std::vector<platform::Place>>("places", &places);
      pass->Erase("loss_var_name");
      pass->SetNotOwned<const std::string>("loss_var_name", &loss_var_name);
      pass->Erase("local_scopes");
      pass->SetNotOwned<const std::vector<Scope *>>("local_scopes",
                                                    &local_scopes);
P
peizhilin 已提交
155
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
fix  
Xin Pan 已提交
156 157 158
      platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase("nccl_ctxs");
      pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
159
#endif
D
dzhwinter 已提交
160 161 162 163 164 165 166 167 168 169 170
    } else if (pass->Type() == "analysis_var_pass") {
      const std::vector<OpDesc *> *all_op_descs =
          new std::vector<OpDesc *>(main_program.Block(0).AllOps());
      graph->Set<const std::vector<OpDesc *>>(kAllOpDescs,
                                              all_op_descs);  // take ownership
      graph->Set<GraphNodePool>(kGraphNodePool,
                                new GraphNodePool);  // take ownership

      pass->Erase(kAllOpDescs);
      pass->SetNotOwned<const std::vector<OpDesc *>>(kAllOpDescs, all_op_descs);

S
sneaxiy 已提交
171
    } else if (pass->Type() == "sequential_execution_pass") {
172 173
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
174 175 176 177 178 179

      pass->Erase(kAllOpDescs);
      pass->Set<const std::vector<OpDesc *>>(
          kAllOpDescs,
          new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
    } else if (pass->Type() == "all_reduce_deps_pass") {
180 181
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
182

S
sneaxiy 已提交
183 184 185 186
      pass->Erase(kAllOpDescs);
      pass->Set<const std::vector<OpDesc *>>(
          kAllOpDescs,
          new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
X
fix  
Xin Pan 已提交
187 188 189
    }
    graph = pass->Apply(std::move(graph));
  }
190 191
  return graph;
}
D
dzhwinter 已提交
192

193 194 195 196 197 198
}  // namespace details
}  // namespace framework
}  // namespace paddle

USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
199
USE_PASS(multi_batch_merge_pass);
200 201 202
USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
D
dzhwinter 已提交
203
USE_PASS(analysis_var_pass);
S
sneaxiy 已提交
204
USE_PASS(sequential_execution_pass);
205
USE_PASS(all_reduce_deps_pass);
S
sneaxiy 已提交
206
USE_PASS(modify_op_lock_and_record_event_pass);