test_isfinite_op.py 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18 19
from op_test import OpTest

S
Steffy-zxf 已提交
20
import paddle
21
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44


class TestInf(OpTest):
    def setUp(self):
        self.op_type = "isinf"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.inf
        x[-1] = np.inf

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(True).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


45 46 47
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class TestFP16Inf(TestInf):
    def init_dtype(self):
        self.dtype = np.float16


class TestNAN(OpTest):
    def setUp(self):
        self.op_type = "isnan"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.nan
        x[-1] = np.nan

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(True).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


73 74 75
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
class TestFP16NAN(TestNAN):
    def init_dtype(self):
        self.dtype = np.float16


class TestIsfinite(OpTest):
    def setUp(self):
        self.op_type = "isfinite"
        self.dtype = np.float32
        self.init_dtype()

        x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype)
        x[0] = np.inf
        x[-1] = np.nan
        out = np.isinf(x) | np.isnan(x)

        self.inputs = {'X': x}
        self.outputs = {'Out': np.array(False).astype(self.dtype)}

    def init_dtype(self):
        pass

    def test_output(self):
        self.check_output()


102 103 104
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
105 106 107 108 109
class TestFP16Isfinite(TestIsfinite):
    def init_dtype(self):
        self.dtype = np.float16


110 111 112 113 114 115 116 117 118 119
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_has_inf_bad_x():
                data = [1, 2, 3]
                result = fluid.layers.has_inf(data)

            self.assertRaises(TypeError, test_has_inf_bad_x)

S
Steffy-zxf 已提交
120 121
        with fluid.dygraph.guard():
            data = paddle.zeros([2, 3])
122
            result = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
123 124 125
            expect_value = np.array([False])
            self.assertEqual((result.numpy() == expect_value).all(), True)

126

127 128
if __name__ == '__main__':
    unittest.main()