test_communicator.py 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18
import time
19 20 21 22

import paddle.fluid as fluid
from paddle.fluid.communicator import Communicator

23 24 25 26
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig

27 28

class TestCommunicator(unittest.TestCase):
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    def net(self):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')

        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        return avg_cost

    def test_communicator_init_and_start(self):
        role = role_maker.UserDefinedRoleMaker(
            current_id=0,
            role=role_maker.Role.WORKER,
            worker_num=2,
            server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])

        fleet.init(role)
        avg_cost = self.net()

        optimizer = fluid.optimizer.SGD(0.01)

        strategy = DistributeTranspilerConfig()
        strategy.sync_mode = True
        strategy.wait_port = False
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

        comm = Communicator(fleet.main_program)
        comm.start()
        time.sleep(10)
        comm.stop()


class TestCommunicator2(unittest.TestCase):
63 64 65 66 67 68 69 70 71
    def test_communicator_init_and_start(self):
        prog = fluid.Program()
        comm = Communicator(prog)
        comm.start()
        comm.stop()


if __name__ == '__main__':
    unittest.main()