split_ids_op.cc 3.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/split_ids_op.h"

namespace paddle {
namespace operators {

class SplitIdsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
22
  void Make() override {
23 24 25 26
    AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}")
        .AsDuplicable();

    AddOutput("Out", "(LoDTensors) The outputs of the input Ids.")
Q
Qiao Longfei 已提交
27 28 29 30 31 32
        .AsDuplicable();

    AddComment(R"DOC(
Split a LoDTensor of Ids into multi LoDTensors, the number is pserver's number
Example:
  Input:
33
    X = [[1,2,3,4,5,6],[2,3]]
Q
Qiao Longfei 已提交
34 35

  Out(3 output):
36 37 38 39 40 41 42 43
    if compress is True:
        out0 = [3, 3, 6]
        out1 = [1, 4]
        out2 = [2, 2, 5]
    else:
        out0 = [3, 6]
        out1 = [1, 4]
        out2 = [2, 5]
Q
Qiao Longfei 已提交
44 45 46 47 48 49 50 51 52
)DOC");
  }
};

class SplitIdsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
53
    PADDLE_ENFORCE(ctx->HasInputs("Ids"), "SplitIdsOp must has input Ids.");
Q
Qiao Longfei 已提交
54 55 56
    PADDLE_ENFORCE(ctx->HasOutputs("Out"), "SplitIdsOp must has output Out.");

    auto ids_var_type = ctx->GetInputsVarType("Ids").front();
57
    auto ids_dims = ctx->GetInputsDim("Ids");
58
    if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
59
      PADDLE_ENFORCE_EQ(ids_dims[0].size(), 2);
60
    }
Q
Qiao Longfei 已提交
61
  }
62 63 64 65 66 67 68 69 70

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(
            ctx.MultiInput<framework::Tensor>("Ids").front()->type()),
        ctx.GetPlace());
  }
Q
Qiao Longfei 已提交
71 72 73 74 75 76
};

class SplitIdsOpInferVarType : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
77
    auto *input_var = block->Var(op_desc.Input("Ids")[0]);
Q
Qiao Longfei 已提交
78
    for (auto &out_var : op_desc.Output("Out")) {
79
      block->Var(out_var)->SetType(input_var->GetType());
Q
Qiao Longfei 已提交
80 81 82 83
    }
  }
};

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
class SplitIdsOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto grad = new framework::OpDesc();
    grad->SetType("concat");
    grad->SetInput("X", OutputGrad("Out"));
    grad->SetOutput("Out", InputGrad("Ids"));
    grad->SetAttr("axis", 0);
    return std::unique_ptr<framework::OpDesc>(grad);
  }
};

Q
Qiao Longfei 已提交
99 100 101 102 103
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(split_ids, ops::SplitIdsOp, ops::SplitIdsOpMaker,
104 105
                  ops::SplitIdsOpGradMaker, ops::SplitIdsOpInferVarType);

Q
Qiao Longfei 已提交
106
REGISTER_OP_CPU_KERNEL(
107 108
    split_ids, ops::SplitIdsOpKernel<paddle::platform::CPUPlace, int64_t>,
    ops::SplitIdsOpKernel<paddle::platform::CPUPlace, float>);