vgg.py 7.4 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential

from ...model import Model
from ...download import get_weights_path_from_url

__all__ = [
    'VGG',
    'vgg11',
    'vgg13',
    'vgg16',
    'vgg19',
]

model_urls = {
    'vgg16': ('https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams',
              'c788f453a3b999063e8da043456281ee')
}


class Classifier(fluid.dygraph.Layer):
    def __init__(self, num_classes, classifier_activation='softmax'):
        super(Classifier, self).__init__()
        self.linear1 = Linear(512 * 7 * 7, 4096)
        self.linear2 = Linear(4096, 4096)
        self.linear3 = Linear(4096, num_classes, act=classifier_activation)

    def forward(self, x):
        x = self.linear1(x)
        x = fluid.layers.relu(x)
        x = fluid.layers.dropout(x, 0.5)
        x = self.linear2(x)
        x = fluid.layers.relu(x)
        x = fluid.layers.dropout(x, 0.5)
        out = self.linear3(x)
        return out


class VGG(Model):
    """VGG model from
    `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_

    Args:
        features (fluid.dygraph.Layer): vgg features create by function make_layers.
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer 
                            will not be defined. Default: 1000.
        classifier_activation (str): activation for the last fc layer. Default: 'softmax'.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import VGG
            from paddle.incubate.hapi.vision.models.vgg import make_layers

            vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']

            features = make_layers(vgg11_cfg)

            vgg11 = VGG(features)

    """

    def __init__(self,
                 features,
                 num_classes=1000,
                 classifier_activation='softmax'):
        super(VGG, self).__init__()
        self.features = features
        self.num_classes = num_classes

        if num_classes > 0:
            classifier = Classifier(num_classes, classifier_activation)
            self.classifier = self.add_sublayer("classifier",
                                                Sequential(classifier))

    def forward(self, x):
        x = self.features(x)

        if self.num_classes > 0:
            x = fluid.layers.flatten(x, 1)
            x = self.classifier(x)
        return x


def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3

    for v in cfg:
        if v == 'M':
            layers += [Pool2D(pool_size=2, pool_stride=2)]
        else:
            if batch_norm:
                conv2d = Conv2D(in_channels, v, filter_size=3, padding=1)
                layers += [conv2d, BatchNorm(v, act='relu')]
            else:
                conv2d = Conv2D(
                    in_channels, v, filter_size=3, padding=1, act='relu')
                layers += [conv2d]
            in_channels = v
    return Sequential(*layers)


cfgs = {
    'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'B':
    [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'D': [
        64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512,
        512, 512, 'M'
    ],
    'E': [
        64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512,
        'M', 512, 512, 512, 512, 'M'
    ],
}


def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
    model = VGG(make_layers(
        cfgs[cfg], batch_norm=batch_norm),
                num_classes=1000,
                **kwargs)

    if pretrained:
        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])
        assert weight_path.endswith(
            '.pdparams'), "suffix of weight must be .pdparams"
        model.load(weight_path)

    return model


def vgg11(pretrained=False, batch_norm=False, **kwargs):
    """VGG 11-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import vgg11

            # build model
            model = vgg11()

            # build vgg11 model with batch_norm
            model = vgg11(batch_norm=True)
    """
    model_name = 'vgg11'
    if batch_norm:
        model_name += ('_bn')
    return _vgg(model_name, 'A', batch_norm, pretrained, **kwargs)


def vgg13(pretrained=False, batch_norm=False, **kwargs):
    """VGG 13-layer model
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import vgg13

            # build model
            model = vgg13()

            # build vgg13 model with batch_norm
            model = vgg13(batch_norm=True)
    """
    model_name = 'vgg13'
    if batch_norm:
        model_name += ('_bn')
    return _vgg(model_name, 'B', batch_norm, pretrained, **kwargs)


def vgg16(pretrained=False, batch_norm=False, **kwargs):
    """VGG 16-layer model 
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import vgg16

            # build model
            model = vgg16()

            # build vgg16 model with batch_norm
            model = vgg16(batch_norm=True)
    """
    model_name = 'vgg16'
    if batch_norm:
        model_name += ('_bn')
    return _vgg(model_name, 'D', batch_norm, pretrained, **kwargs)


def vgg19(pretrained=False, batch_norm=False, **kwargs):
    """VGG 19-layer model 
    
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
        batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.

    Examples:
        .. code-block:: python

            from paddle.incubate.hapi.vision.models import vgg19

            # build model
            model = vgg19()

            # build vgg19 model with batch_norm
            model = vgg19(batch_norm=True)
    """
    model_name = 'vgg19'
    if batch_norm:
        model_name += ('_bn')
    return _vgg(model_name, 'E', batch_norm, pretrained, **kwargs)