cast_op.cu 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cast_op.h"
K
Kexin Zhao 已提交
16
#include "paddle/fluid/platform/float16.h"
Z
Zhang Ting 已提交
17 18 19 20 21
#include "paddle/fluid/platform/gpu_launch_config.h"

namespace paddle {
namespace operators {

Z
Zhang Ting 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
// aligned vector generates vectorized load/store on CUDA
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T* pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}

template <typename InT, typename OutT, int VecSize>
__global__ void VecCastCUDAKernel(const InT* in, const int64_t N, OutT* out) {
  int64_t idx = blockDim.x * blockIdx.x + threadIdx.x;
  using LoadT = AlignedVector<InT, VecSize>;
  using StoreT = AlignedVector<OutT, VecSize>;
43 44
  for (int64_t i = idx * VecSize; i < N;
       i += blockDim.x * gridDim.x * VecSize) {
Z
Zhang Ting 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    InT in_vec[VecSize];
    LoadT* in_value = reinterpret_cast<LoadT*>(&in_vec);
    *in_value = *reinterpret_cast<const LoadT*>(&in[i]);

    OutT out_vec[VecSize];
#pragma unroll
    for (int ii = 0; ii < VecSize; ii++) {
      out_vec[ii] = static_cast<OutT>(in_vec[ii]);
    }

    *(reinterpret_cast<StoreT*>(&out[i])) =
        *reinterpret_cast<StoreT*>(&out_vec[0]);
  }
}

Z
Zhang Ting 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
template <typename InT, typename OutT>
__global__ void CastCUDAKernel(const InT* in, const int64_t N, OutT* out) {
  CUDA_KERNEL_LOOP(index, N) { out[index] = static_cast<OutT>(in[index]); }
}

template <typename InT>
struct CastOpFunctor<platform::CUDADeviceContext, InT> {
  const framework::Tensor* in_;
  framework::Tensor* out_;
  const platform::CUDADeviceContext& ctx_;
  CastOpFunctor(const framework::Tensor* in, framework::Tensor* out,
                const platform::CUDADeviceContext& ctx)
      : in_(in), out_(out), ctx_(ctx) {}

  template <typename OutT>
  void apply() const {
    auto* in = in_->data<InT>();
    auto size = in_->numel();
    auto* out = out_->mutable_data<OutT>(ctx_.GetPlace());
    platform::GpuLaunchConfig config =
        platform::GetGpuLaunchConfig1D(ctx_, size);
Z
Zhang Ting 已提交
81 82 83 84 85 86 87 88 89 90
    int vec_size = VectorizedSize<OutT>(out);
    if (!std::is_same<InT, OutT>::value && vec_size == 4 && size % 4 == 0) {
      VecCastCUDAKernel<InT, OutT, 4><<<
          config.block_per_grid, config.thread_per_block, 0, ctx_.stream()>>>(
          in, size, out);
    } else {
      CastCUDAKernel<InT, OutT><<<config.block_per_grid,
                                  config.thread_per_block, 0, ctx_.stream()>>>(
          in, size, out);
    }
Z
Zhang Ting 已提交
91 92 93 94 95
  }
};

}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
96

97
namespace ops = paddle::operators;
Y
Yu Yang 已提交
98

99
#ifdef PADDLE_WITH_HIP
100 101 102 103 104
REGISTER_OP_CUDA_KERNEL(
    cast, ops::CastOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, double>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int64_t>,
D
duanboqiang 已提交
105
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int16_t>,
106 107 108
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, uint8_t>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
109 110
                      paddle::platform::float16>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
111
                      paddle::platform::complex<float>>,
112
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
113
                      paddle::platform::complex<double>>);
114 115 116 117 118 119
#else
REGISTER_OP_CUDA_KERNEL(
    cast, ops::CastOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, double>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int64_t>,
D
duanboqiang 已提交
120
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, int16_t>,
121 122 123 124 125 126 127
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext, uint8_t>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::float16>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
                      paddle::platform::bfloat16>,
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
128
                      paddle::platform::complex<float>>,
129
    ops::CastOpKernel<paddle::platform::CUDADeviceContext,
130
                      paddle::platform::complex<double>>);
131
#endif