fused_feedforward_op.cu 26.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/fused/fused_dropout_helper.h"
#include "paddle/fluid/operators/layer_norm_kernel.cu.h"
19
#include "paddle/fluid/operators/matmul_v2_op.h"
20
#include "paddle/phi/api/include/tensor.h"
21
#include "paddle/phi/kernels/funcs/blas/blas.h"
22 23
#include "paddle/phi/kernels/funcs/broadcast_function.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
24

25
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
W
Wen Sun 已提交
26
#include "paddle/fluid/distributed/collective/process_group_nccl.h"
27 28 29 30
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#endif

31 32 33
namespace paddle {
namespace operators {

34
template <typename T>
35
static void AllReduce(phi::DenseTensor& tensor,  // NOLINT
36
                      const int ring_id,
L
Leo Chen 已提交
37
                      const phi::GPUContext& ctx) {
38 39
  if (ring_id == -1) return;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
40 41 42 43
  auto map = paddle::distributed::ProcessGroupMapFromGid::getInstance();

  if (map->has(ring_id)) {
    paddle::distributed::ProcessGroup* pg = map->get(ring_id);
44
    auto pg_nccl = static_cast<distributed::ProcessGroupNCCL*>(pg);
45 46
    paddle::distributed::AllreduceOptions opts;
    opts.reduce_op = distributed::ReduceOp::SUM;
47
    auto task = pg_nccl->AllReduce(&tensor, tensor, opts, true, true);
48 49 50 51 52 53 54
    task->Wait();
  } else {
    auto dtype = platform::ToNCCLDataType(
        framework::TransToProtoVarType(tensor.dtype()));
    int64_t numel = tensor.numel();
    const void* sendbuff = tensor.data<T>();
    auto place = ctx.GetPlace();
55
    void* recvbuff = ctx.Alloc<T>(&tensor, tensor.numel() * sizeof(T));
56 57 58 59 60
    auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
    auto stream = ctx.stream();
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclAllReduce(
        sendbuff, recvbuff, numel, dtype, ncclSum, comm->comm(), stream));
  }
61 62 63 64 65 66 67
#else
  PADDLE_THROW(platform::errors::Unimplemented(
      "PaddlePaddle should compile with NCCL or RCCL when used tensor model "
      "parallel op."));
#endif
}

68 69 70
template <typename DeviceContext, typename T>
class FusedFeedForwardKernel : public framework::OpKernel<T> {
 public:
L
Leo Chen 已提交
71
  void MatMul(const phi::GPUContext& ctx,
72 73 74
              const phi::DenseTensor& a,
              const phi::DenseTensor& b,
              phi::DenseTensor* c) const {
75
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
76 77
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
78 79
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, false);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, false);
80 81 82 83
    T alpha = static_cast<T>(1.0);
    blas.MatMul(a, mat_dim_a, b, mat_dim_b, alpha, c, T(0));
  }

L
Leo Chen 已提交
84
  void FFN(const phi::GPUContext& ctx,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
           const phi::DenseTensor& x,
           const phi::DenseTensor& linear1_weight,
           const phi::DenseTensor* linear1_bias,
           const phi::DenseTensor& linear2_weight,
           const phi::DenseTensor* linear2_bias,
           const phi::DenseTensor* ln1_scale,
           const phi::DenseTensor* ln1_bias,
           const phi::DenseTensor* ln2_scale,
           const phi::DenseTensor* ln2_bias,
           phi::DenseTensor* out,
           phi::DenseTensor* dropout1_mask,
           phi::DenseTensor* dropout2_mask,
           phi::DenseTensor* ln1_mean,
           phi::DenseTensor* ln1_variance,
           phi::DenseTensor* ln2_mean,
           phi::DenseTensor* ln2_variance,
           phi::DenseTensor* linear1_out,
           phi::DenseTensor* ln1_out,
           phi::DenseTensor* dropout1_out,
           phi::DenseTensor* dropout2_out,
105 106 107 108 109 110 111 112 113 114
           const int bsz_seq,
           const int d_model,
           const int dim_feedforward,
           const std::string& act_method,
           const bool pre_layer_norm,
           const float epsilon1,
           const float epsilon2,
           const bool add_residual,
           const int ring_id,
           const DropoutParam& dropout_param1,
115
           const DropoutParam& dropout_param2) const {
116 117 118 119 120 121 122 123
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    using U = LayerNormParamType<T>;
124
    const phi::DenseTensor* in = &x;
125 126 127 128 129 130 131 132 133 134 135 136 137

    const U* ln1_scale_ptr =
        ln1_scale == nullptr ? nullptr : ln1_scale->data<U>();
    const U* ln1_bias_ptr = ln1_bias == nullptr ? nullptr : ln1_bias->data<U>();
    const U* ln2_scale_ptr =
        ln2_scale == nullptr ? nullptr : ln2_scale->data<U>();
    const U* ln2_bias_ptr = ln2_bias == nullptr ? nullptr : ln2_bias->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    const T* linear2_bias_ptr =
        linear2_bias == nullptr ? nullptr : linear2_bias->data<T>();

    if (pre_layer_norm) {
138 139 140 141 142 143 144
      pre_layernorm_helper.LayerNorm(ctx,
                                     x.data<T>(),
                                     ln1_scale_ptr,
                                     ln1_bias_ptr,
                                     ln1_out->data<T>(),
                                     ln1_mean->data<U>(),
                                     ln1_variance->data<U>());
145 146 147
      in = ln1_out;
    }
    MatMul(ctx, *in, linear1_weight, linear1_out);
148 149 150 151 152 153
    fused_act_dropout_helper.DropoutActBias(ctx,
                                            linear1_out->data<T>(),
                                            linear1_bias_ptr,
                                            act_method,
                                            dropout1_out->data<T>(),
                                            dropout1_mask->data<uint8_t>());
154
    phi::DenseTensor linear2_out;
155 156
    linear2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&linear2_out, linear2_out.numel() * sizeof(T));
157
    MatMul(ctx, *dropout1_out, linear2_weight, &linear2_out);
158 159 160 161

    // tensor model parallel
    AllReduce<T>(linear2_out, ring_id, ctx);

162
    const T* residual_ptr = add_residual ? x.data<T>() : nullptr;
163
    if (!pre_layer_norm) {
164
      // TODO(Xreki): support post layer_norm case when add_residual is false.
165 166
      PADDLE_ENFORCE_EQ(add_residual,
                        true,
167 168 169 170
                        platform::errors::InvalidArgument(
                            "Attribute add_residual is expected to be true "
                            "when pre_layer_norm is false."));

171
      fused_dropout_layernorm_helper.LayernormResidualDropoutBias(
172 173 174 175 176 177 178 179 180 181
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          ln2_scale_ptr,
          ln2_bias_ptr,
          dropout2_out->data<T>(),
          dropout2_mask->data<uint8_t>(),
          out->data<T>(),
          ln2_mean->data<U>(),
182 183 184
          ln2_variance->data<U>());
    } else {
      fused_dropout_layernorm_helper.ResidualDropoutBias(
185 186 187 188 189 190
          ctx,
          linear2_out.data<T>(),
          residual_ptr,
          linear2_bias_ptr,
          out->data<T>(),
          dropout2_mask->data<uint8_t>());
191 192 193 194
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
195 196 197 198 199
    auto* x = context.Input<phi::DenseTensor>("X");
    auto* linear1_weight = context.Input<phi::DenseTensor>("Linear1Weight");
    auto* linear1_bias = context.Input<phi::DenseTensor>("Linear1Bias");
    auto* linear2_weight = context.Input<phi::DenseTensor>("Linear2Weight");
    auto* linear2_bias = context.Input<phi::DenseTensor>("Linear2Bias");
200
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
201
    auto& dev_ctx = context.template device_context<phi::GPUContext>();
202 203

    auto* ln1_scale =
204
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Scale") : nullptr;
205
    auto* ln1_bias =
206 207 208
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Bias") : nullptr;
    auto* ln2_scale =
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Scale") : nullptr;
209
    auto* ln2_bias =
210
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Bias") : nullptr;
211 212

    auto* ln1_mean =
213
        pre_layer_norm ? context.Output<phi::DenseTensor>("Ln1Mean") : nullptr;
214
    auto* ln1_variance = pre_layer_norm
215
                             ? context.Output<phi::DenseTensor>("Ln1Variance")
216
                             : nullptr;
217 218
    auto* ln2_mean =
        !pre_layer_norm ? context.Output<phi::DenseTensor>("Ln2Mean") : nullptr;
219
    auto* ln2_variance = !pre_layer_norm
220
                             ? context.Output<phi::DenseTensor>("Ln2Variance")
221
                             : nullptr;
222 223 224 225
    auto* out = context.Output<phi::DenseTensor>("Out");
    auto* dropout1_mask = context.Output<phi::DenseTensor>("Dropout1Mask");
    auto* dropout2_mask = context.Output<phi::DenseTensor>("Dropout2Mask");
    auto* linear1_out = context.Output<phi::DenseTensor>("Linear1Out");
226
    auto* ln1_out =
227 228 229
        pre_layer_norm ? context.Output<phi::DenseTensor>("Ln1Out") : nullptr;
    auto* dropout1_out = context.Output<phi::DenseTensor>("Dropout1Out");
    auto* dropout2_out = context.Output<phi::DenseTensor>("Dropout2Out");
230 231 232 233 234

    const std::string act_method = context.Attr<std::string>("act_method");

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
235
    const int ring_id = context.Attr<int>("ring_id");
236
    const bool add_residual = context.Attr<bool>("add_residual");
237 238 239 240 241

    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

    using U = LayerNormParamType<T>;
242 243 244 245 246
    dev_ctx.Alloc<T>(out, out->numel() * sizeof(T));
    dev_ctx.Alloc<uint8_t>(dropout1_mask,
                           dropout1_mask->numel() * sizeof(uint8_t));
    dev_ctx.Alloc<uint8_t>(dropout2_mask,
                           dropout2_mask->numel() * sizeof(uint8_t));
247
    if (pre_layer_norm) {
248 249 250
      dev_ctx.Alloc<U>(ln1_mean, ln1_mean->numel() * sizeof(U));
      dev_ctx.Alloc<U>(ln1_variance, ln1_variance->numel() * sizeof(U));
      dev_ctx.Alloc<T>(ln1_out, ln1_out->numel() * sizeof(T));
251
    } else {
252 253
      dev_ctx.Alloc<U>(ln2_mean, ln2_mean->numel() * sizeof(U));
      dev_ctx.Alloc<U>(ln2_variance, ln2_variance->numel() * sizeof(U));
254 255
    }

256 257 258
    dev_ctx.Alloc<T>(linear1_out, linear1_out->numel() * sizeof(T));
    dev_ctx.Alloc<T>(dropout1_out, dropout1_out->numel() * sizeof(T));
    dev_ctx.Alloc<T>(dropout2_out, dropout2_out->numel() * sizeof(T));
259 260

    auto x_dim = x->dims();
261
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
262
        RowMatrixFromVector(x_dim), 0, false);
263 264 265 266 267 268

    auto dim = linear1_weight->dims();
    int d_model = dim[0];
    int dim_feedforward = dim[dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    FFN(context.cuda_device_context(),
        *x,
        *linear1_weight,
        linear1_bias,
        *linear2_weight,
        linear2_bias,
        ln1_scale,
        ln1_bias,
        ln2_scale,
        ln2_bias,
        out,
        dropout1_mask,
        dropout2_mask,
        ln1_mean,
        ln1_variance,
        ln2_mean,
        ln2_variance,
        linear1_out,
        ln1_out,
        dropout1_out,
        dropout2_out,
        bsz_seq,
        d_model,
        dim_feedforward,
        act_method,
        pre_layer_norm,
        epsilon1,
        epsilon2,
        add_residual,
        ring_id,
        dropout_param1,
        dropout_param2);
301 302 303
  }
};

304 305 306
template <typename DeviceContext, typename T>
class FusedFeedForwardGradKernel : public framework::OpKernel<T> {
 public:
L
Leo Chen 已提交
307
  void MatMulGrad(const phi::GPUContext& ctx,
308 309 310 311 312
                  const phi::DenseTensor& d_out,
                  const phi::DenseTensor& a,
                  const phi::DenseTensor& b,
                  phi::DenseTensor* d_a,
                  phi::DenseTensor* d_b) const {
313
    auto blas = phi::funcs::GetBlas<DeviceContext, T>(ctx);
314 315
    auto a_2d = FoldInitDims(a);
    auto b_2d = FoldInitDims(b);
316 317
    auto mat_dim_a = phi::funcs::CreateMatrixDescriptor(a_2d.dims(), 0, true);
    auto mat_dim_b = phi::funcs::CreateMatrixDescriptor(b_2d.dims(), 0, true);
318
    auto mat_dim_dout =
319
        phi::funcs::CreateMatrixDescriptor(d_out.dims(), 0, false);
320 321 322 323 324
    T alpha = static_cast<T>(1.0);
    blas.MatMul(d_out, mat_dim_dout, b, mat_dim_b, alpha, d_a, T(0));
    blas.MatMul(a, mat_dim_a, d_out, mat_dim_dout, alpha, d_b, T(0));
  }

L
Leo Chen 已提交
325
  void FFNGrad(const phi::GPUContext& ctx,
326 327 328 329 330 331 332
               const phi::DenseTensor& d_out,
               const phi::DenseTensor& x,
               const phi::DenseTensor& dropout1_mask,
               const phi::DenseTensor& dropout2_mask,
               const phi::DenseTensor& linear1_out,
               const phi::DenseTensor* ln1_out,
               const phi::DenseTensor& dropout1_out,
333
               const phi::DenseTensor* dropout2_out,
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
               const phi::DenseTensor& linear1_weight,
               const phi::DenseTensor* linear1_bias,
               const phi::DenseTensor& linear2_weight,
               const phi::DenseTensor* ln1_gamma,
               const phi::DenseTensor* ln1_beta,
               const phi::DenseTensor* ln1_mean,
               const phi::DenseTensor* ln1_variance,
               const phi::DenseTensor* ln2_gamma,
               const phi::DenseTensor* ln2_beta,
               const phi::DenseTensor* ln2_mean,
               const phi::DenseTensor* ln2_variance,
               phi::DenseTensor* d_x,
               phi::DenseTensor* d_linear1_weight,
               phi::DenseTensor* d_linear1_bias,
               phi::DenseTensor* d_linear2_weight,
               phi::DenseTensor* d_linear2_bias,
               phi::DenseTensor* d_ln1_gamma,
               phi::DenseTensor* d_ln1_beta,
               phi::DenseTensor* d_ln2_gamma,
               phi::DenseTensor* d_ln2_beta,
354 355 356 357 358 359 360 361 362 363 364
               const int bsz_seq,
               const int d_model,
               const int dim_feedforward,
               const DropoutParam& dropout_param1,
               const DropoutParam& dropout_param2,
               const std::string& act_method,
               const bool pre_layer_norm,
               const float epsilon1,
               const float epsilon2,
               const bool add_residual,
               const int ring_id) const {
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    FusedDropoutLayerNormHelper<T, uint8_t> pre_layernorm_helper(
        bsz_seq, d_model, epsilon1);
    FusedDropoutHelper<T, uint8_t> fused_act_dropout_helper(
        ctx, bsz_seq, dim_feedforward, dropout_param1);
    FusedDropoutLayerNormHelper<T, uint8_t> fused_dropout_layernorm_helper(
        ctx, bsz_seq, d_model, dropout_param2, epsilon2);

    using U = LayerNormParamType<T>;
    const U* ln1_gamma_ptr =
        ln1_gamma == nullptr ? nullptr : ln1_gamma->data<U>();
    const U* ln1_beta_ptr = ln1_beta == nullptr ? nullptr : ln1_beta->data<U>();
    const U* ln2_gamma_ptr =
        ln2_gamma == nullptr ? nullptr : ln2_gamma->data<U>();
    const U* ln2_beta_ptr = ln2_beta == nullptr ? nullptr : ln2_beta->data<U>();
    const T* linear1_bias_ptr =
        linear1_bias == nullptr ? nullptr : linear1_bias->data<T>();
    T* d_linear1_bias_ptr =
        d_linear1_bias == nullptr ? nullptr : d_linear1_bias->data<T>();
    T* d_linear2_bias_ptr =
        d_linear2_bias == nullptr ? nullptr : d_linear2_bias->data<T>();
    U* d_ln1_gamma_ptr =
        d_ln1_gamma == nullptr ? nullptr : d_ln1_gamma->data<U>();
    U* d_ln1_beta_ptr = d_ln1_beta == nullptr ? nullptr : d_ln1_beta->data<U>();
    U* d_ln2_gamma_ptr =
        d_ln2_gamma == nullptr ? nullptr : d_ln2_gamma->data<U>();
    U* d_ln2_beta_ptr = d_ln2_beta == nullptr ? nullptr : d_ln2_beta->data<U>();

392
    phi::DenseTensor d_linear2_out, d_dropout2_out, d_residual;
393 394 395 396
    d_linear2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&d_linear2_out, d_linear2_out.numel() * sizeof(T));
    d_dropout2_out.Resize({bsz_seq, d_model});
    ctx.Alloc<T>(&d_dropout2_out, d_dropout2_out.numel() * sizeof(T));
397

398 399
    T* d_residual_ptr = nullptr;
    if (add_residual) {
400 401 402
      d_residual.Resize(d_x->dims());
      d_residual_ptr =
          ctx.Alloc<T>(&d_residual, d_residual.numel() * sizeof(T));
403
    }
404 405
    if (pre_layer_norm) {
      fused_dropout_layernorm_helper.ResidualDropoutBiasGrad(
406 407 408 409 410 411
          ctx,
          d_out.data<T>(),
          dropout2_mask.data<uint8_t>(),
          d_linear2_out.data<T>(),
          d_residual_ptr,
          d_linear2_bias_ptr);
412 413
    } else {
      fused_dropout_layernorm_helper.LayernormResidualDropoutBiasGrad(
414 415
          ctx,
          d_out.data<T>(),
416
          dropout2_out->data<T>(),
417 418 419 420 421 422 423 424 425
          dropout2_mask.data<uint8_t>(),
          ln2_gamma_ptr,
          ln2_mean->data<U>(),
          ln2_variance->data<U>(),
          d_dropout2_out.data<T>(),
          d_ln2_gamma_ptr,
          d_ln2_beta_ptr,
          d_linear2_out.data<T>(),
          d_linear2_bias_ptr,
426
          d_residual_ptr);
427 428
    }

429
    phi::DenseTensor d_dropout1_out;
430 431
    d_dropout1_out.Resize({bsz_seq, dim_feedforward});
    ctx.Alloc<T>(&d_dropout1_out, d_dropout1_out.numel() * sizeof(T));
432 433 434 435 436 437
    MatMulGrad(ctx,
               d_linear2_out,
               dropout1_out,
               linear2_weight,
               &d_dropout1_out,
               d_linear2_weight);
438

439
    phi::DenseTensor d_linear1_out;
440 441
    d_linear1_out.Resize({bsz_seq, dim_feedforward});
    ctx.Alloc<T>(&d_linear1_out, d_linear1_out.numel() * sizeof(T));
442 443 444 445 446 447 448 449
    fused_act_dropout_helper.DropoutActBiasGrad(ctx,
                                                d_dropout1_out.data<T>(),
                                                linear1_out.data<T>(),
                                                linear1_bias_ptr,
                                                dropout1_mask.data<uint8_t>(),
                                                d_linear1_out.data<T>(),
                                                d_linear1_bias_ptr,
                                                act_method);
450 451

    if (pre_layer_norm) {
452
      phi::DenseTensor d_ln1_out;
453 454
      d_ln1_out.Resize({bsz_seq, d_model});
      ctx.Alloc<T>(&d_ln1_out, d_ln1_out.numel() * sizeof(T));
455 456 457 458 459
      MatMulGrad(ctx,
                 d_linear1_out,
                 *ln1_out,
                 linear1_weight,
                 &d_ln1_out,
460
                 d_linear1_weight);
461 462
      // tensor model parallel
      AllReduce<T>(d_ln1_out, ring_id, ctx);
463 464 465 466 467 468 469 470 471
      pre_layernorm_helper.LayerNormGrad(ctx,
                                         d_ln1_out.data<T>(),
                                         x.data<T>(),
                                         ln1_gamma_ptr,
                                         ln1_mean->data<U>(),
                                         ln1_variance->data<U>(),
                                         d_x->data<T>(),
                                         d_ln1_gamma_ptr,
                                         d_ln1_beta_ptr);
472 473
    } else {
      MatMulGrad(ctx, d_linear1_out, x, linear1_weight, d_x, d_linear1_weight);
474 475
      // tensor model parallel
      AllReduce<T>(*d_x, ring_id, ctx);
476
    }
477 478 479

    if (add_residual) {
      // gradient accumulation
480 481
      std::vector<const phi::DenseTensor*> ins = {&d_residual, d_x};
      std::vector<phi::DenseTensor*> outs = {d_x};
482 483
      phi::funcs::ElementwiseKernel<T>(
          ctx, ins, &outs, phi::funcs::AddFunctor<T>());
484
    }
485 486 487 488
  }

  void Compute(const framework::ExecutionContext& context) const override {
    using U = LayerNormParamType<T>;
489
    auto& dev_ctx = context.template device_context<phi::GPUContext>();
490
    auto d_out =
491 492
        *context.Input<phi::DenseTensor>(framework::GradVarName("Out"));
    auto x = *context.Input<phi::DenseTensor>("X");
493
    const bool pre_layer_norm = context.Attr<bool>("pre_layer_norm");
494 495 496
    auto dropout1_mask = *context.Input<phi::DenseTensor>("Dropout1Mask");
    auto dropout2_mask = *context.Input<phi::DenseTensor>("Dropout2Mask");
    auto linear1_out = *context.Input<phi::DenseTensor>("Linear1Out");
497
    auto* ln1_out =
498 499
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Out") : nullptr;
    auto dropout1_out = *context.Input<phi::DenseTensor>("Dropout1Out");
500
    auto* dropout2_out = context.Input<phi::DenseTensor>("Dropout2Out");
501 502 503
    auto linear1_weight = *context.Input<phi::DenseTensor>("Linear1Weight");
    auto* linear1_bias = context.Input<phi::DenseTensor>("Linear1Bias");
    auto linear2_weight = *context.Input<phi::DenseTensor>("Linear2Weight");
504
    auto* ln1_mean =
505
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Mean") : nullptr;
506
    auto* ln1_variance = pre_layer_norm
507
                             ? context.Input<phi::DenseTensor>("Ln1Variance")
508 509
                             : nullptr;
    auto* ln1_scale =
510
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Scale") : nullptr;
511
    auto* ln1_bias =
512
        pre_layer_norm ? context.Input<phi::DenseTensor>("Ln1Bias") : nullptr;
513
    auto* ln2_mean =
514
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Mean") : nullptr;
515
    auto* ln2_variance = !pre_layer_norm
516
                             ? context.Input<phi::DenseTensor>("Ln2Variance")
517
                             : nullptr;
518 519
    auto* ln2_scale =
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Scale") : nullptr;
520
    auto* ln2_bias =
521
        !pre_layer_norm ? context.Input<phi::DenseTensor>("Ln2Bias") : nullptr;
522

523 524
    auto* d_x = context.Output<phi::DenseTensor>(framework::GradVarName("X"));
    auto* d_ln1_scale = pre_layer_norm ? context.Output<phi::DenseTensor>(
525 526
                                             framework::GradVarName("Ln1Scale"))
                                       : nullptr;
527
    auto* d_ln1_bias = pre_layer_norm ? context.Output<phi::DenseTensor>(
528 529 530 531
                                            framework::GradVarName("Ln1Bias"))
                                      : nullptr;
    auto* d_ln2_scale = pre_layer_norm
                            ? nullptr
532
                            : context.Output<phi::DenseTensor>(
533 534
                                  framework::GradVarName("Ln2Scale"));
    auto* d_ln2_bias = pre_layer_norm ? nullptr
535
                                      : context.Output<phi::DenseTensor>(
536
                                            framework::GradVarName("Ln2Bias"));
537
    auto* d_linear1_weight = context.Output<phi::DenseTensor>(
538
        framework::GradVarName("Linear1Weight"));
539 540 541
    auto* d_linear1_bias =
        context.Output<phi::DenseTensor>(framework::GradVarName("Linear1Bias"));
    auto* d_linear2_weight = context.Output<phi::DenseTensor>(
542
        framework::GradVarName("Linear2Weight"));
543 544
    auto* d_linear2_bias =
        context.Output<phi::DenseTensor>(framework::GradVarName("Linear2Bias"));
545 546 547

    const float epsilon1 = context.Attr<float>("ln1_epsilon");
    const float epsilon2 = context.Attr<float>("ln2_epsilon");
548
    const bool add_residual = context.Attr<bool>("add_residual");
549
    const int ring_id = context.Attr<int>("ring_id");
550 551 552 553
    const std::string act_method = context.Attr<std::string>("act_method");
    DropoutParam dropout_param1(context, 1);
    DropoutParam dropout_param2(context, 2);

554
    dev_ctx.Alloc<T>(d_x, d_x->numel() * sizeof(T));
555
    if (d_ln1_scale) {
556
      dev_ctx.Alloc<U>(d_ln1_scale, d_ln1_scale->numel() * sizeof(U));
557 558
    }
    if (d_ln1_bias) {
559
      dev_ctx.Alloc<U>(d_ln1_bias, d_ln1_bias->numel() * sizeof(U));
560 561
    }
    if (d_ln2_scale) {
562
      dev_ctx.Alloc<U>(d_ln2_scale, d_ln2_scale->numel() * sizeof(U));
563 564
    }
    if (d_ln2_bias) {
565
      dev_ctx.Alloc<U>(d_ln2_bias, d_ln2_bias->numel() * sizeof(U));
566 567
    }
    if (d_linear1_bias) {
568
      dev_ctx.Alloc<T>(d_linear1_bias, d_linear1_bias->numel() * sizeof(T));
569 570
    }
    if (d_linear2_bias) {
571
      dev_ctx.Alloc<T>(d_linear2_bias, d_linear2_bias->numel() * sizeof(T));
572
    }
573 574
    dev_ctx.Alloc<T>(d_linear1_weight, d_linear1_weight->numel() * sizeof(T));
    dev_ctx.Alloc<T>(d_linear2_weight, d_linear2_weight->numel() * sizeof(T));
575 576

    auto x_dim = x.dims();
577
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(
578
        RowMatrixFromVector(x_dim), 0, false);
579 580 581 582 583 584

    auto linear1_weight_dim = linear1_weight.dims();
    int d_model = linear1_weight_dim[0];
    int dim_feedforward = linear1_weight_dim[linear1_weight_dim.size() - 1];
    int bsz_seq = mat_dim_x.batch_size_ * mat_dim_x.height_;

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    FFNGrad(context.cuda_device_context(),
            d_out,
            x,
            dropout1_mask,
            dropout2_mask,
            linear1_out,
            ln1_out,
            dropout1_out,
            dropout2_out,
            linear1_weight,
            linear1_bias,
            linear2_weight,
            ln1_scale,
            ln1_bias,
            ln1_mean,
            ln1_variance,
            ln2_scale,
            ln2_bias,
            ln2_mean,
            ln2_variance,
            d_x,
            d_linear1_weight,
            d_linear1_bias,
            d_linear2_weight,
            d_linear2_bias,
            d_ln1_scale,
            d_ln1_bias,
            d_ln2_scale,
            d_ln2_bias,
            bsz_seq,
            d_model,
            dim_feedforward,
            dropout_param1,
            dropout_param2,
            act_method,
            pre_layer_norm,
            epsilon1,
            epsilon2,
            add_residual,
624
            ring_id);
625 626
  }
};
627 628 629 630 631 632
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward,
L
Leo Chen 已提交
633 634 635
    ops::FusedFeedForwardKernel<phi::GPUContext, float>,
    ops::FusedFeedForwardKernel<phi::GPUContext, double>,
    ops::FusedFeedForwardKernel<phi::GPUContext, paddle::platform::float16>);
636 637
REGISTER_OP_CUDA_KERNEL(
    fused_feedforward_grad,
L
Leo Chen 已提交
638 639 640
    ops::FusedFeedForwardGradKernel<phi::GPUContext, float>,
    ops::FusedFeedForwardGradKernel<phi::GPUContext, double>,
    ops::FusedFeedForwardGradKernel<phi::GPUContext,
641
                                    paddle::platform::float16>);