test_image_classification.py 10.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import math
武毅 已提交
17
import os
18
import sys
19
import tempfile
20 21 22 23 24
import unittest

import numpy

import paddle
25
from paddle import fluid
Q
Qiao Longfei 已提交
26

P
pangyoki 已提交
27 28
paddle.enable_static()

Q
Qiao Longfei 已提交
29

30
def resnet_cifar10(input, depth=32):
31 32 33
    def conv_bn_layer(
        input, ch_out, filter_size, stride, padding, act='relu', bias_attr=False
    ):
34
        tmp = paddle.static.nn.conv2d(
35 36 37 38 39 40 41 42
            input=input,
            filter_size=filter_size,
            num_filters=ch_out,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=bias_attr,
        )
43
        return paddle.static.nn.batch_norm(input=tmp, act=act)
Q
Qiao Longfei 已提交
44

45
    def shortcut(input, ch_in, ch_out, stride):
Q
Qiao Longfei 已提交
46
        if ch_in != ch_out:
47
            return conv_bn_layer(input, ch_out, 1, stride, 0, None)
Q
Qiao Longfei 已提交
48 49 50
        else:
            return input

Q
Qiao Longfei 已提交
51 52
    def basicblock(input, ch_in, ch_out, stride):
        tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
53
        tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
54
        short = shortcut(input, ch_in, ch_out, stride)
55
        return paddle.nn.functional.relu(paddle.add(x=tmp, y=short))
Q
Qiao Longfei 已提交
56

57 58
    def layer_warp(block_func, input, ch_in, ch_out, count, stride):
        tmp = block_func(input, ch_in, ch_out, stride)
Q
Qiao Longfei 已提交
59
        for i in range(1, count):
60
            tmp = block_func(tmp, ch_out, ch_out, 1)
Q
Qiao Longfei 已提交
61 62 63
        return tmp

    assert (depth - 2) % 6 == 0
M
minqiyang 已提交
64
    n = (depth - 2) // 6
65 66 67
    conv1 = conv_bn_layer(
        input=input, ch_out=16, filter_size=3, stride=1, padding=1
    )
Q
Qiao Longfei 已提交
68 69 70
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
C
ccrrong 已提交
71
    pool = paddle.nn.functional.avg_pool2d(x=res3, kernel_size=8, stride=1)
Q
Qiao Longfei 已提交
72 73 74
    return pool


75
def vgg16_bn_drop(input):
Q
Qiao Longfei 已提交
76
    def conv_block(input, num_filter, groups, dropouts):
77 78 79 80 81 82 83 84 85 86 87
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max',
        )
Q
Qiao Longfei 已提交
88

89 90 91 92 93
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
94

C
ccrrong 已提交
95
    drop = paddle.nn.functional.dropout(x=conv5, p=0.5)
C
Charles-hit 已提交
96
    fc1 = paddle.static.nn.fc(x=drop, size=4096)
97
    bn = paddle.static.nn.batch_norm(input=fc1, act='relu')
C
ccrrong 已提交
98
    drop2 = paddle.nn.functional.dropout(x=bn, p=0.5)
C
Charles-hit 已提交
99
    fc2 = paddle.static.nn.fc(x=drop2, size=4096)
Q
Qiao Longfei 已提交
100 101 102
    return fc2


武毅 已提交
103
def train(net_type, use_cuda, save_dirname, is_local):
104 105 106
    classdim = 10
    data_shape = [3, 32, 32]

G
GGBond8488 已提交
107 108 109 110
    images = paddle.static.data(
        name='pixel', shape=[-1] + data_shape, dtype='float32'
    )
    label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64')
111 112 113 114 115 116 117 118 119 120

    if net_type == "vgg":
        print("train vgg net")
        net = vgg16_bn_drop(images)
    elif net_type == "resnet":
        print("train resnet")
        net = resnet_cifar10(images, 32)
    else:
        raise ValueError("%s network is not supported" % net_type)

C
Charles-hit 已提交
121
    predict = paddle.static.nn.fc(x=net, size=classdim, activation='softmax')
122 123 124
    cost = paddle.nn.functional.cross_entropy(
        input=predict, label=label, reduction='none', use_softmax=False
    )
125
    avg_cost = paddle.mean(cost)
126
    acc = paddle.static.accuracy(input=predict, label=label)
127

128
    # Test program
129
    test_program = fluid.default_main_program().clone(for_test=True)
130 131

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
W
Wu Yi 已提交
132
    optimizer.minimize(avg_cost)
133 134 135 136

    BATCH_SIZE = 128
    PASS_NUM = 1

137 138 139 140 141 142
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.cifar.train10(), buf_size=128 * 10
        ),
        batch_size=BATCH_SIZE,
    )
143

144 145 146
    test_reader = paddle.batch(
        paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE
    )
147

148 149 150
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
武毅 已提交
151 152 153 154 155 156 157 158 159 160 161 162

    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
        loss = 0.0
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                exe.run(main_program, feed=feeder.feed(data))

                if (batch_id % 10) == 0:
                    acc_list = []
                    avg_loss_list = []
                    for tid, test_data in enumerate(test_reader()):
163 164 165 166 167
                        loss_t, acc_t = exe.run(
                            program=test_program,
                            feed=feeder.feed(test_data),
                            fetch_list=[avg_cost, acc],
                        )
武毅 已提交
168 169 170 171 172 173 174 175 176
                        if math.isnan(float(loss_t)):
                            sys.exit("got NaN loss, training failed.")
                        acc_list.append(float(acc_t))
                        avg_loss_list.append(float(loss_t))
                        break  # Use 1 segment for speeding up CI

                    acc_value = numpy.array(acc_list).mean()
                    avg_loss_value = numpy.array(avg_loss_list).mean()

177
                    print(
178
                        'PassID {:1}, BatchID {:04}, Test Loss {:2.2}, Acc {:2.2}'.format(
179 180 181 182 183 184
                            pass_id,
                            batch_id + 1,
                            float(avg_loss_value),
                            float(acc_value),
                        )
                    )
武毅 已提交
185 186

                    if acc_value > 0.01:  # Low threshold for speeding up CI
187 188 189
                        fluid.io.save_inference_model(
                            save_dirname, ["pixel"], [predict], exe
                        )
武毅 已提交
190 191 192 193 194
                        return

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
195 196
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
197 198 199 200
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
201
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
202
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
203 204
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
205
        t = paddle.distributed.transpiler.DistributeTranspiler()
Y
Yancey1989 已提交
206
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
207 208
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
209 210 211
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
212 213 214 215
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
216 217 218 219 220 221 222 223 224


def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

225 226 227
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
228
        # the feed_target_names (the names of variables that will be fed
229 230
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
231 232 233 234 235
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
236 237 238 239 240 241 242 243

        # The input's dimension of conv should be 4-D or 5-D.
        # Use normilized image pixels as input data, which should be in the range [0, 1.0].
        batch_size = 1
        tensor_img = numpy.random.rand(batch_size, 3, 32, 32).astype("float32")

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
244 245 246 247 248
        results = exe.run(
            inference_program,
            feed={feed_target_names[0]: tensor_img},
            fetch_list=fetch_targets,
        )
249

250
        print("infer results: ", results[0])
251

252 253 254 255 256 257 258
        fluid.io.save_inference_model(
            save_dirname,
            feed_target_names,
            fetch_targets,
            exe,
            inference_program,
        )
259

260

武毅 已提交
261
def main(net_type, use_cuda, is_local=True):
262 263 264 265
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
266 267
    temp_dir = tempfile.TemporaryDirectory()
    save_dirname = os.path.join(
268 269
        temp_dir.name, "image_classification_" + net_type + ".inference.model"
    )
270

武毅 已提交
271
    train(net_type, use_cuda, save_dirname, is_local)
272
    infer(use_cuda, save_dirname)
273
    temp_dir.cleanup()
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304


class TestImageClassification(unittest.TestCase):
    def test_vgg_cuda(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=True)

    def test_resnet_cuda(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=True)

    def test_vgg_cpu(self):
        with self.scope_prog_guard():
            main('vgg', use_cuda=False)

    def test_resnet_cpu(self):
        with self.scope_prog_guard():
            main('resnet', use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


if __name__ == '__main__':
    unittest.main()