activation.py 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16

17
__all__ = [
18 19
    'ELU',
    'GELU',
20
    'Hardshrink',
21
    #       'PReLU',
22
    'ReLU',
23 24
    'ReLU6',
    'SELU',
C
ceci3 已提交
25
    'LeakyReLU',
26
    'Sigmoid',
27
    #       'Softmax',
28 29 30 31
    'Softplus',
    'Softshrink',
    'Softsign',
    'Tanhshrink',
32
    'LogSigmoid',
33
    'LogSoftmax',
34
    'HSigmoid'
35 36
]

37 38 39
from ...fluid.dygraph import layers
from ...fluid import core
from ...fluid.framework import in_dygraph_mode
40
from .. import functional as F
41 42


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class ELU(layers.Layer):
    """
    ELU Activation.

    ..  math::
    
        ELU(x) = max(0, x) + min(0, \\alpha * (e^{x}-1))

    Parameters:
        alpha (float, optional): The 'alpha' value of the ELU formulation. Default is 1.0.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([[-1,6],[1,15.6]]))
        m = paddle.nn.ELU(0.2)
        out = m(x) 
        # [[-0.12642411  6.        ]
        #  [ 1.          15.6      ]]
    """

    def __init__(self, alpha=1.0, name=None):
        super(ELU, self).__init__()
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.elu(x, self._alpha, self._name)


class GELU(layers.Layer):
    """
    GELU Activation.

    If approximate is True

    ..  math::

        GELU(x) = 0.5 * x * (1 + tanh(\\sqrt{\\frac{2}{\\pi}} * (x + 0.044715x^{3})))

    else

    ..  math::

        GELU(x) = 0.5 * x * (1 + erf(\\frac{x}{\\sqrt{2}}))

    Parameters:
        approximate (bool, optional): Wether to enable approximation. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        data = np.random.randn(2, 3).astype("float32")
        x = paddle.to_tensor(data)

        m = paddle.nn.GELU()
        out = m(x)

        data
        # array([[ 0.87165993, -1.0541513 , -0.37214822],
        #         [ 0.15647964,  0.32496083,  0.33045998]], dtype=float32)
        out
        # array([[ 0.70456535, -0.15380788, -0.13207214],
        #        [ 0.08796856,  0.20387867,  0.2080159 ]], dtype=float32)
    """

    def __init__(self, approximate=False, name=None):
        super(GELU, self).__init__()
        self._approximate = approximate
        self._name = name

    def forward(self, x):
        return F.gelu(x, self._approximate, self._name)


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
class Hardshrink(layers.Layer):
    """
    Hardshrink Activation

    .. math::

        hardshrink(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x > threshold \\
            &x, & & if \ x < -threshold \\
            &0, & & if \ others
            \end{aligned}
            \right.

    Parameters:
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_variable(np.array([-1, 0.3, 2.5]))
        m = paddle.nn.Hardshrink()
        out = m(x) # [-1., 0., 2.5]
    """

    def __init__(self, threshold=0.5, name=None):
        super(Hardshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
184
        return F.hardshrink(x, self._threshold, self._name)
185 186


187 188
class HSigmoid(layers.Layer):
    """
189 190
	:alias_main: paddle.nn.HSigmoid
	:alias: paddle.nn.HSigmoid,paddle.nn.layer.HSigmoid,paddle.nn.layer.activation.HSigmoid
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

    Hierarchical Sigmoid Layer.
    
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The feature size.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        param_attr (ParamAttr, optional): The parameter attribute for the learnable parameters/weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default: None.
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and 
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default: False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle import fluid, nn
          import paddle.fluid.dygraph as dg
          import paddle.nn.functional as F
          import numpy as np

          main = fluid.Program()
          start = fluid.Program()
          feature_size = 6
          num_classes = 8
          with fluid.unique_name.guard():
              with fluid.program_guard(main, start):
                  x = fluid.data("input", [-1, feature_size],
                              dtype="float32")
                  label = fluid.data("labels", [-1, 1], dtype="int64")
                  hsm = nn.HSigmoid(feature_size, num_classes)
                  y = hsm(x, label)

          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(start)
          feed_dict = {
              "input": np.random.randn(4, feature_size).astype(np.float32),
              "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
          }
          y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
          print(y_np.shape)

          # (4, 1)
    """

    def __init__(self,
                 feature_size,
                 num_classes,
                 param_attr=None,
                 bias_attr=None,
                 is_custom=False,
                 is_sparse=False,
                 dtype="float32"):
        super(HSigmoid, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
                "num_classes must not be less than 2 with default tree")

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._param_attr = param_attr
        self._bias_attr = bias_attr

        self._dtype = dtype

        remote_prefetch = is_sparse
        print("With sparse mode, if your models has only"
              " small parameter prefetch may cause speed down")

        C = self._num_classes if is_custom else self._num_classes - 1
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._param_attr,
            is_bias=False,
            dtype=self._dtype)
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype)

    def forward(self, input, label, path_table=None, path_code=None):
311
        out = F.hsigmoid(
312 313 314 315 316 317 318 319 320 321
            input,
            label,
            self.weight,
            self.bias,
            self._num_classes,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse)
        return out

322 323 324 325 326 327 328

class ReLU(layers.Layer):
    """
    ReLU Activation.

    .. math:

329
        ReLU(x) = max(x, 0)
330 331

    Parameters:
332 333 334 335 336 337
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
338
    
339 340 341
    Examples:
        .. code-block:: python

342 343
        import paddle
        import numpy as np
344

345 346 347 348 349
        paddle.disable_static()

        x = paddle.to_tensor(np.array([-2, 0, 1]).astype('float32'))
        m = paddle.nn.ReLU()
        out = m(x) # [0., 0., 1.]
350 351
    """

352
    def __init__(self, name=None):
353
        super(ReLU, self).__init__()
354
        self._name = name
355

356 357
    def forward(self, x):
        return F.relu(x, self._name)
358 359


360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
class ReLU6(layers.Layer):
    """
    ReLU6 Activation

    .. math::

        \text{ReLU6}(x) = \min(\max(0,x), 6)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-1, 0.3, 6.5]))
        m = paddle.nn.ReLU6()
        out = m(x) # [0, 0.3, 6]
    """

    def __init__(self, name=None):
        super(ReLU6, self).__init__()
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)


class SELU(layers.Layer):
    """
    SELU Activation

    .. math::

        \text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))), \\
        with\,alpha=1.6732632423543772848170429916717 and \\
        scale=1.0507009873554804934193349852946

    Parameters:
        scale (float, optional): The value of scale for SELU. Default is 1.0507009873554804934193349852946
        alpha (float, optional): The value of alpha for SELU. Default is 1.6732632423543772848170429916717
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([[0, 1],[2, 3]]))
        m = paddle.nn.SELU()
        out = m(x) # [[0, 1.050701],[2.101402, 3.152103]]
    """

    def __init__(self,
                 scale=1.0507009873554804934193349852946,
                 alpha=1.6732632423543772848170429916717,
                 name=None):
        super(SELU, self).__init__()
        self._scale = scale
        self._alpha = alpha
        self._name = name

    def forward(self, x):
        return F.selu(x, self._scale, self._alpha, self._name)


C
ceci3 已提交
445 446 447 448 449 450 451 452 453
class LeakyReLU(layers.Layer):
    """
    Leaky ReLU Activation.

    .. math:

        out = max(x, alpha * x)

    Parameters:
454 455 456 457
        alpha (float, optional): Slope of the activation function at :math:`x < 0` .
            Default: 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
C
ceci3 已提交
458
    
459 460 461
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
C
ceci3 已提交
462 463 464 465
    
    Examples:
        .. code-block:: python

466 467
        import paddle
        import numpy as np
C
ceci3 已提交
468

469
        paddle.disable_static()
470 471

        lrelu = paddle.nn.LeakyReLU()
472
        x = paddle.to_tensor(np.array([-2, 0, 1], 'float32'))
473
        out = lrelu(x)  # [-0.02, 0., 1.]
C
ceci3 已提交
474 475
    """

476
    def __init__(self, alpha=1e-2, name=None):
C
ceci3 已提交
477 478
        super(LeakyReLU, self).__init__()
        self._alpha = alpha
479
        self._name = name
C
ceci3 已提交
480

481
    def forward(self, x):
482
        return F.leaky_relu(x, self._alpha, self._name)
C
ceci3 已提交
483 484


485 486
class Sigmoid(layers.Layer):
    """
487 488 489
    this interface is used to construct a callable object of the ``Sigmoid`` class. This layer calcluate the `sigmoid` of input x.
    
    .. math::
S
swtkiwi 已提交
490

491
        output = \\frac{1}{1 + e^{-x}}
492
    
493 494
    Parameters:
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
495

496 497
    Shape:
        x: N-D tensor, available dtype is float16, float32, float64.
498 499

    Returns:
500
        A callable object of Sigmoid.
501 502
    
    Examples:
503

504 505 506
        .. code-block:: python

          import numpy as np
507 508 509
          import paddle

          paddle.disable_static()
510
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
511 512 513 514
          m = paddle.nn.Sigmoid()
          x = paddle.to_variable(input_data)
          output = m(x)
          print(output.numpy()) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
515 516
    """

517
    def __init__(self, name=None):
518
        super(Sigmoid, self).__init__()
519
        self.name = name
520

521 522
    def forward(self, x):
        return F.sigmoid(x, self.name)
523 524


525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
class Softplus(layers.Layer):
    """
    Softplus Activation

    .. math::

        \text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
        \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Softplus()
        out = m(x) # [0.513015, 0.598139, 0.744397, 0.854355]

    """

    def __init__(self, beta=1, threshold=20, name=None):
        super(Softplus, self).__init__()
        self._beta = beta
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softplus(x, self._beta, self._threshold, self._name)


class Softshrink(layers.Layer):
    """
    Softshrink Activation

    .. math::

        \text{Softshrink}(x) =
        \begin{cases}
        x - threshold, & \text{ if } x > threshold \\
        x + threshold, & \text{ if } x < -threshold \\
        0, & \text{ otherwise }
        \end{cases}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.9, -0.2, 0.1, 0.8]))
        m = paddle.nn.Softshrink()
        out = m(x) # [-0.4, 0, 0, 0.3]
    """

    def __init__(self, threshold=0.5, name=None):
        super(Softshrink, self).__init__()
        self._threshold = threshold
        self._name = name

    def forward(self, x):
        return F.softshrink(x, self._threshold, self._name)


class Softsign(layers.Layer):
    """
    Softsign Activation

    .. math::

        \text{Softsign}(x) = \frac{x}{1 + |x|}

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:

        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Softsign()
        out = m(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
    """

    def __init__(self, name=None):
        super(Softsign, self).__init__()
        self._name = name

    def forward(self, x):
        return F.softsign(x, self._name)


class Tanhshrink(layers.Layer):
    """
    Tanhshrink Activation

    .. math::

        \text{Tanhshrink}(x) = x - \text{Tanh}(x)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([-0.4, -0.2, 0.1, 0.3]))
        m = paddle.nn.Tanhshrink()
        out = m(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
    """

    def __init__(self, name=None):
        super(Tanhshrink, self).__init__()
        self._name = name

    def forward(self, x):
        return F.tanhshrink(x, self._name)


686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
class LogSigmoid(layers.Layer):
    """
    LogSigmoid Activation.
    
    .. math:

        LogSigmoid(x) = \log \frac{1}{1 + e^{-x}}

    Parameters:
        x (Tensor): The input Tensor with data type float32, or float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
    
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
    
    Examples:
        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.to_tensor(np.array([1.0, 2.0, 3.0, 4.0]))
        m = paddle.nn.LogSigmoid()
        out = m(x) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
    """

    def __init__(self, name=None):
        super(LogSigmoid, self).__init__()
        self._name = name

    def forward(self, x):
        return F.logsigmoid(x, self._name)


724 725 726 727 728 729 730 731 732 733
class LogSoftmax(layers.Layer):
    """
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

        Out[i, j] = log(softmax(x)) 
                  = log(\\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})

    Parameters:
734 735 736 737 738 739
        axis (int, optional): The axis along which to perform log_softmax
            calculations. It should be in range [-D, D), where D is the
            dimensions of the input Tensor . If ``axis`` < 0, it works the
            same way as :math:`axis + D` . Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
740
 
741 742 743
    Shape:
        - input: Tensor with any shape.
        - output: Tensor with the same shape as input.
744 745 746 747

    Examples:
        .. code-block:: python

748 749
        import paddle
        import numpy as np
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
        paddle.disable_static()

        x = np.array([[[-2.0, 3.0, -4.0, 5.0],
                        [3.0, -4.0, 5.0, -6.0],
                        [-7.0, -8.0, 8.0, 9.0]],
                        [[1.0, -2.0, -3.0, 4.0],
                        [-5.0, 6.0, 7.0, -8.0],
                        [6.0, 7.0, 8.0, 9.0]]])
        m = paddle.nn.LogSoftmax()
        x = paddle.to_tensor(x)
        out = m(x)
        # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
        #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
        #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
        #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
        #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
        #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
768 769
    """

770
    def __init__(self, axis=-1, name=None):
771 772
        super(LogSoftmax, self).__init__()
        self._axis = axis
773
        self._name = name
774

775 776
    def forward(self, x):
        return F.log_softmax(x, self._axis)