gpu_context.cc 31.4 KB
Newer Older
W
Wilber 已提交
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Corporation. All rights reserved.
W
Wilber 已提交
3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
15

16
#include "paddle/phi/backends/gpu/gpu_context.h"
17

W
Wilber 已提交
18
#include <algorithm>
W
Wilber 已提交
19 20 21 22 23 24
#include <array>
#include <functional>
#include <future>
#include <memory>
#include <mutex>

25 26
#include "glog/logging.h"
#include "paddle/phi/api/ext/exception.h"
27 28
#include "paddle/phi/backends/gpu/gpu_decls.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
W
Wilber 已提交
29
#include "paddle/phi/backends/gpu/gpu_resources.h"
30 31 32
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/allocator.h"
L
Leo Chen 已提交
33
#include "paddle/phi/core/cuda_stream.h"
W
Wilber 已提交
34 35

#ifdef PADDLE_WITH_CUDA
36 37 38 39
#include "paddle/phi/backends/dynload/cublas.h"
#include "paddle/phi/backends/dynload/cudnn.h"
#include "paddle/phi/backends/dynload/cusolver.h"
#include "paddle/phi/backends/dynload/cusparse.h"
W
Wilber 已提交
40
#if !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
41
#include "paddle/phi/backends/dynload/nccl.h"
W
Wilber 已提交
42 43 44 45
#endif  // !defined(__APPLE__) && defined(PADDLE_WITH_NCCL)
#endif  // PADDLE_WITH_CUDA

#ifdef PADDLE_WITH_HIP
46 47
#include "paddle/phi/backends/dynload/miopen.h"
#include "paddle/phi/backends/dynload/rocblas.h"
W
Wilber 已提交
48
#if !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
49
#include "paddle/phi/backends/dynload/rccl.h"
W
Wilber 已提交
50 51 52 53 54 55 56
#endif  // !defined(__APPLE__) && defined(PADDLE_WITH_RCCL)
#endif  // PADDLE_WITH_HIP

// NOTE: The paddle framework should add WITH_EIGEN option to support compile
// without eigen.
#include "unsupported/Eigen/CXX11/Tensor"

57
// TODO(phi): remove fluid header.
W
Wilber 已提交
58 59
#include "paddle/fluid/platform/enforce.h"

60
namespace phi {
W
Wilber 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

namespace internal {

class EigenGpuStreamDevice : public Eigen::StreamInterface {
 public:
  EigenGpuStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenGpuStreamDevice() override {}

  void Reinitialize(gpuStream_t cuda_stream,
                    Allocator* allocator,
                    GPUPlace place) {
    stream_ = cuda_stream;
    place_ = place;
    allocator_ = allocator;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const gpuStream_t& stream() const override { return stream_; }

  const gpuDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
    auto buf = allocator_->Allocate(num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << " requested "
            << num_bytes;
    void* retv = buf->ptr();
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
    return retv;
  }

  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(
L
Leo Chen 已提交
121
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), stream()));
W
Wilber 已提交
122 123
#else
      PADDLE_ENFORCE_GPU_SUCCESS(
L
Leo Chen 已提交
124
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), stream()));
W
Wilber 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
#endif
    }
    return semaphore_;
  }

 private:
  GPUPlace place_;
  gpuStream_t stream_;                // not owned;
  Allocator* allocator_;              // not owned;
  const gpuDeviceProp* device_prop_;  // not owned;
  mutable void* scratch_;
  mutable unsigned int* semaphore_;
  mutable std::mutex mtx_;  // to protect allocations_
  mutable std::unordered_map<void*, Allocator::AllocationPtr> allocations_;
};

#ifdef PADDLE_WITH_HIP
static void StreamCallbackFunc(gpuStream_t stream,
                               gpuError_t status,
                               void* user_data)
#endif
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10000
    static void CUDART_CB StreamCallbackFunc(void* user_data)
#else
    static void CUDART_CB
    StreamCallbackFunc(cudaStream_t stream, cudaError_t status, void* user_data)
#endif
#endif
{
  std::unique_ptr<std::function<void()>> func(
      reinterpret_cast<std::function<void()>*>(user_data));
  (*func)();
}

}  // namespace internal

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
void DnnWorkspaceHandle::RunFuncSync(
    const std::function<void(void*)>& cudnn_func,
    size_t required_workspace_bytes,
    bool use_cached_allocation) {
  bool need_realloc = required_workspace_bytes > WorkspaceSize();
  if (need_realloc && !use_cached_allocation) {
    void* workspace_ptr = nullptr;
    size_t size = ((required_workspace_bytes + 255) >> 8) << 8;
    std::lock_guard<std::mutex> guard(*mtx_);
#ifdef PADDLE_WITH_HIP
    auto status = hipMalloc(&workspace_ptr, size);
#else
    auto status = cudaMalloc(&workspace_ptr, size);
#endif
    if (status == gpuSuccess) {
      cudnn_func(workspace_ptr);
      phi::backends::gpu::GpuStreamSync(stream_);
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(hipFree(workspace_ptr));
#else
      PADDLE_ENFORCE_GPU_SUCCESS(cudaFree(workspace_ptr));
#endif
      return;
    }
  }

  RunFunc(cudnn_func, required_workspace_bytes);
  if (need_realloc) {
    // Release the workspace allocated in this running.
    ResetWorkspace();
  }
}

W
Wilber 已提交
195
void DnnWorkspaceHandle::ResetWorkspace() { allocation_ = nullptr; }
W
Wilber 已提交
196

W
Wilber 已提交
197 198 199 200 201 202
void DnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) return;
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = allocator_->Allocate(required_workspace_bytes);
}
W
Wilber 已提交
203 204 205 206 207

struct GPUContext::Impl {
  void Init() {
    owned_ = true;
    backends::gpu::GPUDeviceGuard guard(place_.device);
W
Wilber 已提交
208 209 210 211 212 213 214 215
    phi::InitGpuProperties(place_,
                           &compute_capability_,
                           &runtime_version_,
                           &driver_version_,
                           &multi_process_,
                           &max_threads_per_mp_,
                           &max_threads_per_block_,
                           &max_grid_dim_size_);
L
Leo Chen 已提交
216 217
    stream_ = new CUDAStream(place_);
    InitEigenDevice();
W
Wilber 已提交
218 219 220 221 222
    InitDnnWorkspace();
  }

  void PartialInitWithoutAllocator() {
    owned_ = true;
L
Leo Chen 已提交
223
    stream_owned_ = true;
W
Wilber 已提交
224
    backends::gpu::GPUDeviceGuard guard(place_.device);
W
Wilber 已提交
225 226 227 228 229 230 231 232
    phi::InitGpuProperties(place_,
                           &compute_capability_,
                           &runtime_version_,
                           &driver_version_,
                           &multi_process_,
                           &max_threads_per_mp_,
                           &max_threads_per_block_,
                           &max_grid_dim_size_);
L
Leo Chen 已提交
233
    stream_ = new CUDAStream(place_);
W
Wilber 已提交
234 235 236 237
  }

  void PartialInitWithAllocator() {
    owned_ = true;
L
Leo Chen 已提交
238
    stream_owned_ = true;
W
Wilber 已提交
239 240 241 242 243 244 245 246
    backends::gpu::GPUDeviceGuard guard(place_.device);
    InitDnnWorkspace();
  }

  explicit Impl(const GPUPlace& place) : place_(place) {}

  ~Impl() {
    backends::gpu::GPUDeviceGuard guard(place_.device);
W
Wilber 已提交
247 248 249 250 251 252
    if (owned_) {
      DestoryInternalWorkspace();
      DestoryInternalEigenDevice();
      phi::DestroySparseHandle(sparse_handle_);
      phi::DestroySolverHandle(solver_handle_);
      phi::DestroyDnnHandle(dnn_handle_);
W
Wilber 已提交
253
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
W
Wilber 已提交
254 255 256
      if (nccl_comm_) {
        PADDLE_ENFORCE_GPU_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
      }
W
Wilber 已提交
257
#endif
W
Wilber 已提交
258 259 260 261
      phi::DestroyBlasHandle(blas_handle_);
      phi::DestroyBlasHandle(blas_tensor_core_handle_);
      phi::DestroyBlasHandle(blas_tf32_tensor_core_handle_);
      phi::DestroyBlasLtHandle(blaslt_handle_);
L
Leo Chen 已提交
262 263 264
    }
    if (stream_owned_ && stream_) {
      delete stream_;
W
Wilber 已提交
265
    }
W
Wilber 已提交
266 267 268 269 270 271 272 273 274 275 276
  }

  const Place& GetPlace() const { return place_; }

  bool IsTensorCoreAvailable() const {
    return blas_tensor_core_handle_ != nullptr;
  }

  void InitDnnWorkspace() {
    PD_CHECK(allocator_ != nullptr,
             "the device allocator for gpu context is nullptr.");
L
Leo Chen 已提交
277
    workspace_ = new DnnWorkspaceHandle(allocator_, stream());
W
Wilber 已提交
278 279 280 281 282
  }

  void DestoryInternalWorkspace() {
    if (owned_ && workspace_ != nullptr) {
      delete workspace_;
283
      workspace_ = nullptr;
W
Wilber 已提交
284 285 286
    }
  }

W
Wilber 已提交
287 288 289 290 291 292 293 294
  // TODO(wilber): The return type is a pointer, to be modified later.
  // DnnWorkspaceHandle* GetDnnWorkspace() {
  //   PD_CHECK(workspace_ != nullptr, "the gpu cudnn workspace is nullptr.");
  //   return workspace_;
  // }
  DnnWorkspaceHandle GetDnnWorkspace() {
    PD_CHECK(allocator_ != nullptr,
             "the device allocator for gpu context is nullptr.");
L
Leo Chen 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    return DnnWorkspaceHandle(allocator_, stream());
  }

  void SetStream(gpuStream_t stream) {
    if (stream_ == nullptr) {
      auto s = Stream(reinterpret_cast<StreamId>(stream));
      stream_ = new CUDAStream(place_, s);
      stream_owned_ = true;
    }
    stream_->set_raw_stream(stream);
  }

  void SetCUDAStream(CUDAStream* stream, bool clear = true) {
    if (clear && stream_owned_ && stream_) {
      delete stream_;
    }
    stream_owned_ = false;
    stream_ = stream;
    // TODO(phi): reset related handles?
W
Wilber 已提交
314 315
  }

L
Leo Chen 已提交
316 317 318 319 320
  gpuStream_t stream() const {
    auto s = stream_->raw_stream();
    PD_CHECK(s != nullptr, "the gpu stream is nullptr.");
    return s;
  }
W
Wilber 已提交
321

L
Leo Chen 已提交
322
  CUDAStream* cuda_stream() const {
W
Wilber 已提交
323 324 325 326 327 328 329 330
    PD_CHECK(stream_ != nullptr, "the gpu stream is nullptr.");
    return stream_;
  }

  void InitEigenDevice() {
    PD_CHECK(allocator_ != nullptr,
             "the allocator for eigen device is nullptr.");
    eigen_stream_.reset(new internal::EigenGpuStreamDevice());
L
Leo Chen 已提交
331
    eigen_stream_->Reinitialize(stream(), allocator_, place_);
W
Wilber 已提交
332 333 334 335 336 337 338 339 340 341 342 343
    eigen_device_ = new Eigen::GpuDevice(eigen_stream_.get());
  }

  void DestoryInternalEigenDevice() {
    if (owned_ && eigen_device_ != nullptr) {
      delete eigen_device_;
      eigen_device_ = nullptr;
    }
  }

  void SetEigenDevice(Eigen::GpuDevice* device) { eigen_device_ = device; }

344 345 346 347 348 349 350 351 352 353 354 355 356
  void SetEigenDevice(std::function<Eigen::GpuDevice*()>&& creator) {
    eigen_device_creator_ = std::move(creator);
  }

  Eigen::GpuDevice* eigen_device() {
    std::call_once(flag_eigen_device_, [&]() {
      if (!eigen_device_) {
        if (!eigen_device_creator_)
          InitEigenDevice();
        else
          eigen_device_ = eigen_device_creator_();
      }
    });
W
Wilber 已提交
357 358 359 360
    PD_CHECK(eigen_device_ != nullptr, "the gpu eigen_device is nullptr.");
    return eigen_device_;
  }

X
xiaoxiaohehe001 已提交
361
  blasHandle_t GetBlasHandle() {
362
    std::call_once(flag_blas_, [&]() {
X
xiaoxiaohehe001 已提交
363
      if (!blas_handle_) {
L
Leo Chen 已提交
364 365 366
        if (!blas_handle_creator_) {
          phi::InitBlasHandle(&blas_handle_, stream());
        } else {
367
          blas_handle_ = blas_handle_creator_();
L
Leo Chen 已提交
368
        }
X
xiaoxiaohehe001 已提交
369 370 371 372
      }
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 9000
      if (!blas_tensor_core_handle_) {
L
Leo Chen 已提交
373 374 375
        if (!blas_tensor_core_handle_creator_) {
          phi::InitBlasHandle(&blas_tensor_core_handle_, stream());
        } else {
376
          blas_tensor_core_handle_ = blas_tensor_core_handle_creator_();
L
Leo Chen 已提交
377
        }
X
xiaoxiaohehe001 已提交
378 379 380 381 382 383
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH));
      }
#endif
#if CUDA_VERSION >= 11000
      if (!blas_tf32_tensor_core_handle_) {
L
Leo Chen 已提交
384 385 386
        if (!blas_tf32_tensor_core_handle_creator_) {
          phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream());
        } else {
387 388
          blas_tf32_tensor_core_handle_ =
              blas_tf32_tensor_core_handle_creator_();
L
Leo Chen 已提交
389
        }
X
xiaoxiaohehe001 已提交
390 391 392 393 394 395
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH));
      }
#endif
#endif
    });
W
Wilber 已提交
396 397 398 399 400 401
    PD_CHECK(blas_handle_ != nullptr, "the gpu blas handle is nullptr.");
    return blas_handle_;
  }

  void SetBlasHandle(blasHandle_t blas) { blas_handle_ = blas; }

402 403 404 405
  void SetBlasHandle(std::function<blasHandle_t()>&& handle_creator) {
    blas_handle_creator_ = std::move(handle_creator);
  }

W
Wilber 已提交
406 407
  void SetBlasTensorCoreHandle(blasHandle_t handle) {
    blas_tensor_core_handle_ = handle;
408 409
  }

410 411 412 413
  void SetBlasTensorCoreHandle(std::function<blasHandle_t()>&& handle_creator) {
    blas_tensor_core_handle_creator_ = std::move(handle_creator);
  }

W
Wilber 已提交
414 415
  void SetBlasTF32Handle(blasHandle_t handle) {
    blas_tf32_tensor_core_handle_ = handle;
416 417
  }

418 419 420 421
  void SetBlasTF32Handle(std::function<blasHandle_t()>&& handle_creator) {
    blas_tf32_tensor_core_handle_creator_ = std::move(handle_creator);
  }

422 423
  void SetBlasLtHandle(blasLtHandle_t blaslt) { blaslt_handle_ = blaslt; }

424 425 426 427
  void SetBlasLtHandle(std::function<blasLtHandle_t()>&& handle_creator) {
    blaslt_handle_creator_ = std::move(handle_creator);
  }

X
xiaoxiaohehe001 已提交
428
  blasLtHandle_t GetBlasLtHandle() {
429 430 431 432 433 434 435
    std::call_once(flag_blaslt_, [&]() {
      if (!blaslt_handle_) {
        if (!blaslt_handle_creator_)
          phi::InitBlasLtHandle(&blaslt_handle_);
        else
          blaslt_handle_ = blaslt_handle_creator_();
      }
X
xiaoxiaohehe001 已提交
436
    });
437 438 439 440
    PD_CHECK(blaslt_handle_ != nullptr, "the gpu blasLt handle is nullptr.");
    return blaslt_handle_;
  }

W
Wilber 已提交
441
  dnnHandle_t GetDnnHandle() {
442 443
    std::call_once(flag_dnn_, [&]() {
      if (!dnn_handle_) {
L
Leo Chen 已提交
444 445 446
        if (!dnn_handle_creator_) {
          phi::InitDnnHandle(&dnn_handle_, stream(), place_);
        } else {
447
          dnn_handle_ = dnn_handle_creator_();
L
Leo Chen 已提交
448
        }
449
      }
X
xiaoxiaohehe001 已提交
450
    });
W
Wilber 已提交
451 452 453 454 455 456 457
    PD_CHECK(dnn_handle_ != nullptr, "the gpu dnn handle is nullptr.");
    return dnn_handle_;
  }

  void DestroyInternalDnnHandle() {
#ifdef PADDLE_WITH_HIP
    if (owned_ && dnn_handle_ != nullptr) {
458
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::miopenDestroy(dnn_handle_));
W
Wilber 已提交
459 460 461 462
      dnn_handle_ = nullptr;
    }
#else
    if (owned_ && dnn_handle_ != nullptr) {
463
      PADDLE_ENFORCE_GPU_SUCCESS(phi::dynload::cudnnDestroy(dnn_handle_));
W
Wilber 已提交
464 465 466 467 468 469 470
      dnn_handle_ = nullptr;
    }
#endif  // PADDLE_WITH_HIP
  }

  void SetDnnHandle(dnnHandle_t handle) { dnn_handle_ = handle; }

471 472 473 474
  void SetDnnHandle(std::function<dnnHandle_t()>&& handle_creator) {
    dnn_handle_creator_ = std::move(handle_creator);
  }

X
xiaoxiaohehe001 已提交
475
  solverHandle_t GetSolverHandle() {
476 477
    std::call_once(flag_slover_, [&]() {
      if (!solver_handle_) {
L
Leo Chen 已提交
478 479 480
        if (!solver_handle_creator_) {
          phi::InitSolverHandle(&solver_handle_, stream());
        } else {
481
          solver_handle_ = solver_handle_creator_();
L
Leo Chen 已提交
482
        }
483
      }
X
xiaoxiaohehe001 已提交
484
    });
W
Wilber 已提交
485 486 487 488 489 490
    PD_CHECK(solver_handle_ != nullptr, "the gpu solver handle is nullptr.");
    return solver_handle_;
  }

  void SetSolverHandle(solverHandle_t handle) { solver_handle_ = handle; }

491 492 493 494
  void SetSolverHandle(std::function<solverHandle_t()>&& handle_creator) {
    solver_handle_creator_ = std::move(handle_creator);
  }

495
  sparseHandle_t GetSparseHandle() {
496 497
    std::call_once(flag_sparse_, [&]() {
      if (!sparse_handle_) {
L
Leo Chen 已提交
498 499 500
        if (!sparse_handle_creator_) {
          phi::InitSparseHandle(&sparse_handle_, stream());
        } else {
501
          sparse_handle_ = sparse_handle_creator_();
L
Leo Chen 已提交
502
        }
503
      }
504
    });
W
Wilber 已提交
505 506 507 508 509 510
    PD_CHECK(sparse_handle_ != nullptr, "the gpu sparse handle is nullptr.");
    return sparse_handle_;
  }

  void SetSparseHandle(sparseHandle_t handle) { sparse_handle_ = handle; }

511 512 513 514
  void SetSparseHandle(std::function<sparseHandle_t()>&& handle_creator) {
    sparse_handle_creator_ = std::move(handle_creator);
  }

W
Wilber 已提交
515 516 517 518
  void Wait() const {
#ifdef PADDLE_WITH_HIP
    hipError_t e_sync = hipSuccess;
#if !defined(_WIN32)
L
Leo Chen 已提交
519
    e_sync = hipStreamSynchronize(stream());
W
Wilber 已提交
520
#else
L
Leo Chen 已提交
521
    while (e_sync = hipStreamQuery(stream())) {
W
Wilber 已提交
522 523 524 525 526 527 528
      if (e_sync == hipErrorNotReady) continue;
      break;
    }
#endif  // !defined(_WIN32)
#else   // PADDLE_WITH_HIP
    cudaError_t e_sync = cudaSuccess;
#if !defined(_WIN32)
L
Leo Chen 已提交
529
    e_sync = cudaStreamSynchronize(stream());
W
Wilber 已提交
530
#else
L
Leo Chen 已提交
531
    while (e_sync = cudaStreamQuery(stream())) {
W
Wilber 已提交
532 533 534 535 536 537 538 539 540 541 542
      if (e_sync == cudaErrorNotReady) continue;
      break;
    }
#endif  // !defined(_WIN32)
#endif  // PADDLE_WITH_HIP

    PADDLE_ENFORCE_GPU_SUCCESS(e_sync);
  }

  void WaitEvent(gpuEvent_t ev) const {
#ifdef PADDLE_WITH_HIP
L
Leo Chen 已提交
543
    PADDLE_ENFORCE_GPU_SUCCESS(hipStreamWaitEvent(stream(), ev, 0));
W
Wilber 已提交
544
#else
L
Leo Chen 已提交
545
    PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamWaitEvent(stream(), ev, 0));
W
Wilber 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
#endif
  }

  ncclComm_t GetNcclComm() const {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    // PD_CHECK(nccl_comm_ != nullptr, "the gpu nccl_comm is nullptr.");
    return nccl_comm_;
#endif
    return nullptr;
  }

  void SetNcclComm(ncclComm_t comm) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    nccl_comm_ = comm;
#endif
  }

X
xiaoxiaohehe001 已提交
563
  inline void CublasCall(const std::function<void(blasHandle_t)>& callback) {
564
    std::call_once(flag_cublas_, [&]() {
X
xiaoxiaohehe001 已提交
565
      if (!blas_handle_) {
L
Leo Chen 已提交
566 567 568
        if (!blas_handle_creator_) {
          phi::InitBlasHandle(&blas_handle_, stream());
        } else {
569
          blas_handle_ = blas_handle_creator_();
L
Leo Chen 已提交
570
        }
X
xiaoxiaohehe001 已提交
571 572 573 574
      }
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 9000
      if (!blas_tensor_core_handle_) {
L
Leo Chen 已提交
575 576 577
        if (!blas_tensor_core_handle_creator_) {
          phi::InitBlasHandle(&blas_tensor_core_handle_, stream());
        } else {
578
          blas_tensor_core_handle_ = blas_tensor_core_handle_creator_();
L
Leo Chen 已提交
579
        }
X
xiaoxiaohehe001 已提交
580 581 582 583 584 585
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH));
      }
#endif
#if CUDA_VERSION >= 11000
      if (!blas_tf32_tensor_core_handle_) {
L
Leo Chen 已提交
586 587 588
        if (!blas_tf32_tensor_core_handle_creator_) {
          phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream());
        } else {
589 590
          blas_tf32_tensor_core_handle_ =
              blas_tf32_tensor_core_handle_creator_();
L
Leo Chen 已提交
591
        }
X
xiaoxiaohehe001 已提交
592 593 594 595 596 597
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH));
      }
#endif
#endif
    });
W
Wilber 已提交
598 599 600 601 602 603 604 605 606 607
    if (blas_tf32_tensor_core_handle_ != nullptr) {
      std::lock_guard<std::mutex> guard(blas_tf32_mtx_);
      callback(blas_tf32_tensor_core_handle_);
    } else {
      std::lock_guard<std::mutex> guard(blas_mtx_);
      callback(blas_handle_);
    }
  }

  inline void TensorCoreCublasCallIfAvailable(
X
xiaoxiaohehe001 已提交
608
      const std::function<void(blasHandle_t)>& callback) {
609 610
    std::call_once(flag_tensorcore_cublas_, [&]() {
      if (!blas_handle_) {
L
Leo Chen 已提交
611 612 613
        if (!blas_handle_creator_) {
          phi::InitBlasHandle(&blas_handle_, stream());
        } else {
614
          blas_handle_ = blas_handle_creator_();
L
Leo Chen 已提交
615
        }
616
      }
X
xiaoxiaohehe001 已提交
617 618 619
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 9000
      if (!blas_tensor_core_handle_) {
L
Leo Chen 已提交
620 621 622
        if (!blas_tensor_core_handle_creator_) {
          phi::InitBlasHandle(&blas_tensor_core_handle_, stream());
        } else {
623
          blas_tensor_core_handle_ = blas_tensor_core_handle_creator_();
L
Leo Chen 已提交
624
        }
X
xiaoxiaohehe001 已提交
625 626 627 628 629 630
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tensor_core_handle_, CUBLAS_TENSOR_OP_MATH));
      }
#endif
#if CUDA_VERSION >= 11000
      if (!blas_tf32_tensor_core_handle_) {
L
Leo Chen 已提交
631 632 633
        if (!blas_tf32_tensor_core_handle_creator_) {
          phi::InitBlasHandle(&blas_tf32_tensor_core_handle_, stream());
        } else {
634 635
          blas_tf32_tensor_core_handle_ =
              blas_tf32_tensor_core_handle_creator_();
L
Leo Chen 已提交
636
        }
X
xiaoxiaohehe001 已提交
637 638 639 640 641 642
        PADDLE_RETRY_CUDA_SUCCESS(phi::dynload::cublasSetMathMode(
            blas_tf32_tensor_core_handle_, CUBLAS_TF32_TENSOR_OP_MATH));
      }
#endif
#endif
    });
W
Wilber 已提交
643 644 645 646 647 648 649 650 651 652
    if (blas_tensor_core_handle_ != nullptr) {
      std::lock_guard<std::mutex> guard(blas_tensor_core_mtx_);
      callback(blas_tensor_core_handle_);
    } else {
      std::lock_guard<std::mutex> guard(blas_mtx_);
      callback(blas_handle_);
    }
  }

  inline void CusparseCall(
653
      const std::function<void(sparseHandle_t)>& callback) {
654
    std::call_once(flag_sparse_, [&]() {
655
      if (!sparse_handle_) {
L
Leo Chen 已提交
656 657 658
        if (!sparse_handle_creator_) {
          phi::InitSparseHandle(&sparse_handle_, stream());
        } else {
659
          sparse_handle_ = sparse_handle_creator_();
L
Leo Chen 已提交
660
        }
661 662
      }
    });
W
Wilber 已提交
663 664 665 666 667 668 669 670 671 672 673
    std::lock_guard<std::mutex> guard(sparse_mtx_);
    callback(sparse_handle_);
  }

  void RecordEvent(gpuEvent_t ev, const std::function<void()>& callback) const {
    callback();
    RecordEvent(ev);
  }

  void RecordEvent(gpuEvent_t ev) const {
#ifdef PADDLE_WITH_HIP
L
Leo Chen 已提交
674
    PADDLE_ENFORCE_GPU_SUCCESS(hipEventRecord(ev, stream()));
W
Wilber 已提交
675
#else
L
Leo Chen 已提交
676
    PADDLE_ENFORCE_GPU_SUCCESS(cudaEventRecord(ev, stream()));
W
Wilber 已提交
677 678 679 680
#endif
  }

  void AddStreamCallback(const std::function<void()>& callback) const {
L
Leo Chen 已提交
681
    // NOTE(zhiqiu): better use threadpool here, otherwise "std::async" may
682
    // launch too many threads and result in thread oversubscription.
L
Leo Chen 已提交
683 684
    auto* callback_func = new std::function<void()>(std::move(callback));
    auto* func = new std::function<void()>([this, callback_func] {
W
Wilber 已提交
685
      std::lock_guard<std::mutex> lock(stream_call_back_mtx_);
L
Leo Chen 已提交
686 687 688 689 690
      VLOG(4) << "Stream callback";
      last_future_ = std::async(std::launch::async, [callback_func]() {
        std::unique_ptr<std::function<void()>> releaser(callback_func);
        (*callback_func)();
      });
W
Wilber 已提交
691 692 693 694
    });

#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_GPU_SUCCESS(
L
Leo Chen 已提交
695
        hipStreamAddCallback(stream(), internal::StreamCallbackFunc, func, 0));
W
Wilber 已提交
696 697 698 699
#endif
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10000
    PADDLE_ENFORCE_GPU_SUCCESS(
L
Leo Chen 已提交
700
        cudaLaunchHostFunc(stream(), internal::StreamCallbackFunc, func));
W
Wilber 已提交
701 702
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
L
Leo Chen 已提交
703
        cudaStreamAddCallback(stream(), internal::StreamCallbackFunc, func, 0));
W
Wilber 已提交
704 705 706 707 708 709
#endif
#endif
  }

  void WaitStreamCallback() const {
#if defined(PADDLE_WITH_HIP) || defined(PADDLE_WITH_CUDA)
L
Leo Chen 已提交
710
    phi::backends::gpu::GpuStreamSync(stream());
W
Wilber 已提交
711 712 713 714 715 716 717 718 719
#endif
    {
      std::lock_guard<std::mutex> lock(stream_call_back_mtx_);
      if (last_future_.valid()) {
        last_future_.wait();
      }
    }
  }

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
  bool HasDnnAttr(const std::string& attr_name) const {
    return dnn_attrs_.count(attr_name) != 0UL;
  }

  const Attribute& GetDnnAttr(const std::string& attr_name) const {
    auto iter = dnn_attrs_.find(attr_name);
    PADDLE_ENFORCE_NE(
        iter,
        dnn_attrs_.end(),
        phi::errors::NotFound("Attribute `%s` is not found in OneDNNContext."));
    return iter->second;
  }

  void SetDnnAttr(const std::string& attr_name, Attribute attr) {
    dnn_attrs_[attr_name] = attr;
  }

L
Leo Chen 已提交
737 738
  // use one flag for all handles?
  // they should be accessed consistently
W
Wilber 已提交
739
  bool owned_{false};
L
Leo Chen 已提交
740
  bool stream_owned_{false};
W
Wilber 已提交
741 742 743 744 745 746 747 748 749
  Place place_;
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
  int max_threads_per_block_;
  std::array<int, 3> max_grid_dim_size_;

L
Leo Chen 已提交
750
  CUDAStream* stream_{nullptr};
W
Wilber 已提交
751
  Eigen::GpuDevice* eigen_device_{nullptr};
752
  std::function<Eigen::GpuDevice*()> eigen_device_creator_{nullptr};
W
Wilber 已提交
753
  blasHandle_t blas_handle_{nullptr};
754
  std::function<blasHandle_t()> blas_handle_creator_{nullptr};
W
Wilber 已提交
755
  blasHandle_t blas_tensor_core_handle_{nullptr};
756
  std::function<blasHandle_t()> blas_tensor_core_handle_creator_{nullptr};
W
Wilber 已提交
757
  blasHandle_t blas_tf32_tensor_core_handle_{nullptr};
758
  std::function<blasHandle_t()> blas_tf32_tensor_core_handle_creator_{nullptr};
759
  blasLtHandle_t blaslt_handle_{nullptr};
760
  std::function<blasLtHandle_t()> blaslt_handle_creator_{nullptr};
W
Wilber 已提交
761
  dnnHandle_t dnn_handle_{nullptr};
762
  std::function<dnnHandle_t()> dnn_handle_creator_{nullptr};
W
Wilber 已提交
763
  solverHandle_t solver_handle_{nullptr};
764
  std::function<solverHandle_t()> solver_handle_creator_{nullptr};
W
Wilber 已提交
765
  sparseHandle_t sparse_handle_{nullptr};
766
  std::function<sparseHandle_t()> sparse_handle_creator_{nullptr};
W
Wilber 已提交
767 768
  DnnWorkspaceHandle* workspace_{nullptr};

769
  std::once_flag flag_sparse_;
X
xiaoxiaohehe001 已提交
770 771 772 773 774 775
  std::once_flag flag_blas_;
  std::once_flag flag_blaslt_;
  std::once_flag flag_dnn_;
  std::once_flag flag_slover_;
  std::once_flag flag_cublas_;
  std::once_flag flag_tensorcore_cublas_;
776
  std::once_flag flag_eigen_device_;
X
xiaoxiaohehe001 已提交
777

W
Wilber 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.

  // NOTE: Distributed communicator, distributed framework manages its
  // resources.
  ncclComm_t nccl_comm_{nullptr};
#endif

  mutable std::mutex blas_mtx_;
  mutable std::mutex blas_tensor_core_mtx_;
  mutable std::mutex blas_tf32_mtx_;
  mutable std::mutex sparse_mtx_;
  mutable std::mutex stream_call_back_mtx_;
  mutable std::future<void> last_future_;

  Allocator* allocator_{nullptr};  // external resource.
  // A internal resouce to initinalize eigen_device.
  std::unique_ptr<internal::EigenGpuStreamDevice> eigen_stream_{nullptr};
800 801 802 803 804

  // Holds some attributes only used by the gpudnn kernel calculation
  // Because DeviceContext is a global singleton, you need to ensure thread
  // safety, use the thread_local variable
  static thread_local AttributeMap dnn_attrs_;
W
Wilber 已提交
805 806
};

807 808
thread_local AttributeMap GPUContext::Impl::dnn_attrs_ = {};

W
Wilber 已提交
809 810 811 812
GPUContext::GPUContext(GPUContext&&) = default;

GPUContext& GPUContext::operator=(GPUContext&&) = default;

L
Leo Chen 已提交
813 814 815 816 817 818
GPUContext::GPUContext(const GPUPlace& place, bool init)
    : DeviceContext(), impl_(std::make_unique<Impl>(place)) {
  if (init) {
    impl_->PartialInitWithoutAllocator();
  }
}
W
Wilber 已提交
819 820 821 822 823

GPUContext::~GPUContext() = default;

const Place& GPUContext::GetPlace() const { return impl_->GetPlace(); }

L
Leo Chen 已提交
824 825 826
gpuStream_t GPUContext::stream() const { return impl_->stream(); }

CUDAStream* GPUContext::cuda_stream() const { return impl_->cuda_stream(); }
W
Wilber 已提交
827 828 829 830 831 832 833

dnnHandle_t GPUContext::cudnn_handle() const { return impl_->GetDnnHandle(); }

blasHandle_t GPUContext::cublas_handle() const {
  return impl_->GetBlasHandle();
}

834 835 836 837
blasLtHandle_t GPUContext::cublaslt_handle() const {
  return impl_->GetBlasLtHandle();
}

W
Wilber 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
solverHandle_t GPUContext::cusolver_dn_handle() const {
  return impl_->GetSolverHandle();
}

sparseHandle_t GPUContext::cusparse_handle() const {
  return impl_->GetSparseHandle();
}

void GPUContext::Wait() const { impl_->Wait(); }

void GPUContext::WaitEvent(gpuEvent_t ev) const { impl_->WaitEvent(ev); }

bool GPUContext::tensor_core_available() const {
  return impl_->IsTensorCoreAvailable();
}

int GPUContext::GetComputeCapability() const {
  return impl_->compute_capability_;
}

int GPUContext::GetMaxPhysicalThreadCount() const {
  return impl_->multi_process_ * impl_->max_threads_per_mp_;
}

int GPUContext::GetSMCount() const { return impl_->multi_process_; }

int GPUContext::GetMaxThreadsPerBlock() const {
  return impl_->max_threads_per_block_;
}

std::array<int, 3> GPUContext::GetCUDAMaxGridDimSize() const {
  return impl_->max_grid_dim_size_;
}

Eigen::GpuDevice* GPUContext::eigen_device() const {
  return impl_->eigen_device();
}

W
Wilber 已提交
876
DnnWorkspaceHandle GPUContext::cudnn_workspace_handle() const {
W
Wilber 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
  return impl_->GetDnnWorkspace();
}

void GPUContext::CublasCall(
    const std::function<void(blasHandle_t)>& callback) const {
  impl_->CublasCall(callback);
}

void GPUContext::TensorCoreCublasCallIfAvailable(
    const std::function<void(blasHandle_t)>& callback) const {
  impl_->TensorCoreCublasCallIfAvailable(callback);
}

void GPUContext::CusparseCall(
    const std::function<void(sparseHandle_t)>& callback) const {
  impl_->CusparseCall(callback);
}

void GPUContext::RecordEvent(gpuEvent_t ev,
                             const std::function<void()>& callback) const {
  impl_->RecordEvent(ev, callback);
}

void GPUContext::RecordEvent(gpuEvent_t ev) const { impl_->RecordEvent(ev); }

void GPUContext::AddStreamCallback(
    const std::function<void()>& callback) const {
  impl_->AddStreamCallback(callback);
}

void GPUContext::WaitStreamCallback() const { impl_->WaitStreamCallback(); }

ncclComm_t GPUContext::nccl_comm() const { return impl_->GetNcclComm(); }

void GPUContext::set_nccl_comm(ncclComm_t comm) { impl_->SetNcclComm(comm); }

void GPUContext::Init() {
  impl_->allocator_ = const_cast<Allocator*>(&this->GetAllocator());
  impl_->Init();
}

W
Wilber 已提交
918 919 920 921
void GPUContext::SetStream(gpuStream_t stream) {
  impl_->allocator_ = const_cast<Allocator*>(&this->GetAllocator());
  impl_->SetStream(stream);
}
W
Wilber 已提交
922

L
Leo Chen 已提交
923 924 925 926 927
void GPUContext::SetCUDAStream(CUDAStream* stream, bool clear) {
  impl_->allocator_ = const_cast<Allocator*>(&this->GetAllocator());
  impl_->SetCUDAStream(stream, clear);
}

W
Wilber 已提交
928 929 930 931
void GPUContext::SetEigenDevice(Eigen::GpuDevice* device) {
  impl_->SetEigenDevice(device);
}

932 933 934 935
void GPUContext::SetEigenDevice(std::function<Eigen::GpuDevice*()>&& creator) {
  impl_->SetEigenDevice(std::move(creator));
}

W
Wilber 已提交
936 937 938 939
void GPUContext::SetBlasHandle(blasHandle_t blas) {
  impl_->SetBlasHandle(blas);
}

940 941 942 943
void GPUContext::SetBlasHandle(std::function<blasHandle_t()>&& func) {
  impl_->SetBlasHandle(std::move(func));
}

W
Wilber 已提交
944 945 946 947
void GPUContext::SetBlasTensorCoreHandle(blasHandle_t handle) {
  impl_->SetBlasTensorCoreHandle(handle);
}

948 949 950 951
void GPUContext::SetBlasTensorCoreHandle(std::function<blasHandle_t()>&& func) {
  impl_->SetBlasTensorCoreHandle(std::move(func));
}

W
Wilber 已提交
952 953 954 955
void GPUContext::SetBlasTF32Handle(blasHandle_t handle) {
  impl_->SetBlasTF32Handle(handle);
}

956 957 958 959
void GPUContext::SetBlasTF32Handle(std::function<blasHandle_t()>&& func) {
  impl_->SetBlasTF32Handle(std::move(func));
}

960 961 962 963
void GPUContext::SetBlasLtHandle(blasLtHandle_t blaslt) {
  impl_->SetBlasLtHandle(blaslt);
}

964 965 966 967
void GPUContext::SetBlasLtHandle(std::function<blasLtHandle_t()>&& func) {
  impl_->SetBlasLtHandle(std::move(func));
}

W
Wilber 已提交
968 969 970 971
void GPUContext::SetDnnHandle(dnnHandle_t handle) {
  impl_->SetDnnHandle(handle);
}

972 973 974 975
void GPUContext::SetDnnHandle(std::function<dnnHandle_t()>&& func) {
  impl_->SetDnnHandle(std::move(func));
}

W
Wilber 已提交
976 977 978 979
void GPUContext::SetSolverHandle(solverHandle_t handle) {
  impl_->SetSolverHandle(handle);
}

980 981 982 983
void GPUContext::SetSolverHandle(std::function<solverHandle_t()>&& func) {
  impl_->SetSolverHandle(std::move(func));
}

W
Wilber 已提交
984 985 986 987
void GPUContext::SetSparseHandle(sparseHandle_t handle) {
  impl_->SetSparseHandle(handle);
}

988 989 990 991
void GPUContext::SetSparseHandle(std::function<sparseHandle_t()>&& func) {
  impl_->SetSparseHandle(std::move(func));
}

W
Wilber 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
void GPUContext::SetDnnWorkspaceHandle(DnnWorkspaceHandle* handle) {
  impl_->workspace_ = handle;
}

void GPUContext::PartialInitWithoutAllocator() {
  impl_->PartialInitWithoutAllocator();
}

void GPUContext::PartialInitWithAllocator() {
  impl_->allocator_ = const_cast<Allocator*>(&this->GetAllocator());
  impl_->PartialInitWithAllocator();
}

void GPUContext::SetComputeCapability(int val) {
  impl_->compute_capability_ = val;
}

void GPUContext::SetMaxThreadsPerMultiProcessor(int val) {
  impl_->max_threads_per_mp_ = val;
}

void GPUContext::SetMultiProcessors(int val) { impl_->multi_process_ = val; }

void GPUContext::SetMaxThreadsPerBlock(int val) {
  impl_->max_threads_per_block_ = val;
}

void GPUContext::SetMaxGridDimSize(const std::array<int, 3>& val) {
  impl_->max_grid_dim_size_ = val;
}

void GPUContext::SetDriverVersion(int val) { impl_->driver_version_ = val; }

void GPUContext::SetRuntimeVersion(int val) { impl_->runtime_version_ = val; }

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
bool GPUContext::HasDnnAttr(const std::string& attr_name) const {
  return impl_->HasDnnAttr(attr_name);
}

const Attribute& GPUContext::GetDnnAttr(const std::string& attr_name) const {
  return impl_->GetDnnAttr(attr_name);
}

void GPUContext::SetDnnAttr(const std::string& attr_name, Attribute attr) {
  return impl_->SetDnnAttr(attr_name, std::move(attr));
}

1039
}  // namespace phi