nets.html 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>nets &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/>
        <link rel="up" title="Fluid" href="../fluid.html"/>
        <link rel="next" title="optimizer" href="optimizer.html"/>
        <link rel="prev" title="evaluator" href="evaluator.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../model_configs.html">Model Configuration</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l1"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../fluid.html">Fluid</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../model_configs.html">Model Configuration</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../config/activation.html">Activation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../config/layer.html">Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../config/evaluators.html">Evaluators</a></li>
<li class="toctree-l2"><a class="reference internal" href="../config/optimizer.html">Optimizer</a></li>
<li class="toctree-l2"><a class="reference internal" href="../config/pooling.html">Pooling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../config/networks.html">Networks</a></li>
<li class="toctree-l2"><a class="reference internal" href="../config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="../data/image.html">Image Interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="../data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../run_logic.html">Training and Inference</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../fluid.html">Fluid</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="layers.html">layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="data_feeder.html">data_feeder</a></li>
<li class="toctree-l2"><a class="reference internal" href="executor.html">executor</a></li>
<li class="toctree-l2"><a class="reference internal" href="initializer.html">initializer</a></li>
<li class="toctree-l2"><a class="reference internal" href="evaluator.html">evaluator</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">nets</a></li>
<li class="toctree-l2"><a class="reference internal" href="optimizer.html">optimizer</a></li>
<li class="toctree-l2"><a class="reference internal" href="param_attr.html">param_attr</a></li>
<li class="toctree-l2"><a class="reference internal" href="profiler.html">profiler</a></li>
<li class="toctree-l2"><a class="reference internal" href="regularizer.html">regularizer</a></li>
<li class="toctree-l2"><a class="reference internal" href="io.html">io</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../fluid.html">Fluid</a> > </li>
      
    <li>nets</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="nets">
<h1>nets<a class="headerlink" href="#nets" title="Permalink to this headline"></a></h1>
<div class="section" id="simple-img-conv-pool">
<h2>simple_img_conv_pool<a class="headerlink" href="#simple-img-conv-pool" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">simple_img_conv_pool</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>pool_size</em>, <em>pool_stride</em>, <em>act</em>, <em>param_attr=None</em>, <em>pool_type='max'</em>, <em>use_cudnn=True</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

</div>
<div class="section" id="sequence-conv-pool">
<h2>sequence_conv_pool<a class="headerlink" href="#sequence-conv-pool" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">sequence_conv_pool</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>param_attr=None</em>, <em>act='sigmoid'</em>, <em>pool_type='max'</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

</div>
<div class="section" id="glu">
<h2>glu<a class="headerlink" href="#glu" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">glu</code><span class="sig-paren">(</span><em>input</em>, <em>dim=-1</em><span class="sig-paren">)</span></dt>
<dd><p>The gated linear unit composed by split, sigmoid activation and elementwise
multiplication. Specifically, Split the input into two equal sized parts
<span class="math">\(a\)</span> and <span class="math">\(b\)</span> along the given dimension and then compute as
following:</p>
<blockquote>
<div><div class="math">
\[{GLU}(a, b)= a \otimes \sigma(b)\]</div>
</div></blockquote>
<p>Refer to <a class="reference external" href="https://arxiv.org/pdf/1612.08083.pdf">Language Modeling with Gated Convolutional Networks</a>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input variable which is a Tensor or LoDTensor.</li>
<li><strong>dim</strong> (<em>int</em>) &#8211; The dimension along which to split. If <span class="math">\(dim &lt; 0\)</span>, the
dimension to split along is <span class="math">\(rank(input) + dim\)</span>.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">The Tensor variable with half the size of input.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># x is a Tensor variable with shape [3, 6, 9]</span>
<span class="n">fluid</span><span class="o">.</span><span class="n">nets</span><span class="o">.</span><span class="n">glu</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>  <span class="c1"># shape of output: [3, 3, 9]</span>
</pre></div>
</div>
</dd></dl>

</div>
<div class="section" id="scaled-dot-product-attention">
<h2>scaled_dot_product_attention<a class="headerlink" href="#scaled-dot-product-attention" title="Permalink to this headline"></a></h2>
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.nets.</code><code class="descname">scaled_dot_product_attention</code><span class="sig-paren">(</span><em>queries</em>, <em>keys</em>, <em>values</em>, <em>num_heads=1</em>, <em>dropout_rate=0.0</em><span class="sig-paren">)</span></dt>
<dd><p>The dot-product attention.</p>
<p>Attention mechanism can be seen as mapping a query and a set of key-value
pairs to an output. The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a compatibility
function (dot-product here) of the query with the corresponding key.</p>
<p>The dot-product attention can be implemented through (batch) matrix
multipication as follows:</p>
<blockquote>
<div><div class="math">
\[Attention(Q, K, V)= softmax(QK^\mathrm{T})V\]</div>
</div></blockquote>
<p>Refer to <a class="reference external" href="https://arxiv.org/pdf/1706.03762.pdf">Attention Is All You Need</a>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>queries</strong> (<em>Variable</em>) &#8211; The input variable which should be a 3-D Tensor.</li>
<li><strong>keys</strong> (<em>Variable</em>) &#8211; The input variable which should be a 3-D Tensor.</li>
<li><strong>values</strong> (<em>Variable</em>) &#8211; The input variable which should be a 3-D Tensor.</li>
<li><strong>num_heads</strong> (<em>int</em>) &#8211; Head number to compute the scaled dot product
attention. Default value is 1.</li>
<li><strong>dropout_rate</strong> (<em>float</em>) &#8211; The dropout rate to drop the attention weight.
Default value is 0.</li>
</ul>
</td>
</tr>
265
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first">A 3-D Tensor computed by multi-head scaled dot product                   attention.</p>
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
</td>
</tr>
<tr class="field-odd field"><th class="field-name">Return type:</th><td class="field-body"><p class="first">Variable</p>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Raises:</th><td class="field-body"><p class="first last"><code class="xref py py-exc docutils literal"><span class="pre">ValueError</span></code> &#8211; If input queries, keys, values are not 3-D Tensors.</p>
</td>
</tr>
</tbody>
</table>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>1. When num_heads &gt; 1, three linear projections are learned respectively
to map input queries, keys and values into queries&#8217;, keys&#8217; and values&#8217;.
queries&#8217;, keys&#8217; and values&#8217; have the same shapes with queries, keys
and values.</p>
<p class="last">1. When num_heads == 1, scaled_dot_product_attention has no learnable
parameters.</p>
</div>
<p class="rubric">Examples</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Suppose q, k, v are Tensors with the following shape:</span>
<span class="c1"># q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]</span>

<span class="n">contexts</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">nets</span><span class="o">.</span><span class="n">scaled_dot_product_attention</span><span class="p">(</span><span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
<span class="n">contexts</span><span class="o">.</span><span class="n">shape</span>  <span class="c1"># [3, 5, 10]</span>
</pre></div>
</div>
</dd></dl>

</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="optimizer.html" class="btn btn-neutral float-right" title="optimizer" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="evaluator.html" class="btn btn-neutral" title="evaluator" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>