grad_op_builder.cc 4.2 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/framework/grad_op_builder.h"
F
fengjiayi 已提交
16
#include "paddle/framework/op_registry.h"
17 18 19 20

namespace paddle {
namespace framework {

21
OperatorBase* GradOpBuilder::Build() {
22
  BuildOpInOutArgList();
Y
Yu Yang 已提交
23
  std::string grad_op_type = OpRegistry::grad_ops().at(op_.type_);
24 25
  OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)();
  grad_op->type_ = grad_op_type;
26 27 28 29
  CompleteGradOp(grad_op);
  return grad_op;
}

30
OpInOutArg* GradOpBuilder::BuildArg(const VarProto& var,
31
                                    const VarIndexMap& var_map,
F
fengjiayi 已提交
32 33
                                    const std::vector<int>& format,
                                    InOutType type) {
34 35 36 37 38 39 40
  int idx = var_map.at(var.name());
  int begin_idx = format.empty() ? idx : format.at(idx);
  int end_idx = format.empty() ? idx + 1 : format.at(idx + 1);
  return new OpInOutArg(var.name(), type, !var.ignore_gradient(), begin_idx,
                        end_idx);
}

41
void GradOpBuilder::BuildOpInOutArgList() {
Y
Yu Yang 已提交
42 43
  const OpProto& op_proto = OpRegistry::protos().at(op_.type_);
  const auto& var_map = *(OpRegistry::VarIndexMaps().at(op_.type_));
F
fengjiayi 已提交
44
  const std::vector<int>& in_format =
Y
Yu Yang 已提交
45 46
      op_.attrs_.count("input_format")
          ? op_.GetAttr<std::vector<int>>("input_format")
47
          : std::vector<int>();
F
fengjiayi 已提交
48
  const std::vector<int>& out_format =
Y
Yu Yang 已提交
49 50
      op_.attrs_.count("output_format")
          ? op_.GetAttr<std::vector<int>>("output_format")
51 52 53 54 55 56 57 58 59 60 61
          : std::vector<int>();
  for (const auto& var : op_proto.inputs()) {
    arg_list_.emplace_back(
        std::shared_ptr<OpInOutArg>(BuildArg(var, var_map, in_format, IN)));
  }
  for (const auto& var : op_proto.outputs()) {
    arg_list_.emplace_back(
        std::shared_ptr<OpInOutArg>(BuildArg(var, var_map, out_format, OUT)));
  }
}

62
void GradOpBuilder::AddArgIntoGradOp(const OpInOutArg* arg,
F
fengjiayi 已提交
63 64 65
                                     std::vector<std::string>& in_out,
                                     std::vector<int>& format,
                                     VarIndexMap* varmap, int& idx,
F
fengjiayi 已提交
66
                                     bool is_grad) const {
67 68 69 70
  std::string var_name = arg->proto_name_;
  if (is_grad) {
    var_name += OperatorBase::GRAD_VAR_SUFFIX();
  }
F
fengjiayi 已提交
71
  (*varmap)[var_name] = idx++;
72
  size_t pre_sz = in_out.size();
Y
Yu Yang 已提交
73
  auto base_it = arg->type_ == IN ? op_.inputs_.begin() : op_.outputs_.begin();
74 75 76 77 78 79 80 81 82 83
  std::copy(base_it + arg->begin_idx_, base_it + arg->end_idx_,
            std::back_inserter(in_out));
  if (is_grad) {
    for (size_t i = pre_sz; i < in_out.size(); ++i) {
      in_out[i] += OperatorBase::GRAD_VAR_SUFFIX();
    }
  }
  format.push_back(in_out.size());
}

84
void GradOpBuilder::CompleteGradOp(OperatorBase* grad_op) const {
Y
Yu Yang 已提交
85
  grad_op->attrs_ = op_.attrs_;
86 87 88 89 90
  grad_op->attrs_.erase("input_format");
  grad_op->attrs_.erase("output_format");
  VarIndexMap* grad_varmap = new VarIndexMap();
  int in_idx = 0;
  int out_idx = 0;
F
fengjiayi 已提交
91 92
  std::vector<int> in_format({0});
  std::vector<int> out_format({0});
93 94 95
  for (const auto& arg : arg_list_) {
    // op_'s inputs_ and outputs_
    if (arg->needed_in_grad_) {
F
fengjiayi 已提交
96 97
      AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap,
                       in_idx, false);
98 99 100
    }
    if (arg->type_ == IN) {
      // gradients of op_'s inputs_
F
fengjiayi 已提交
101 102
      AddArgIntoGradOp(arg.get(), grad_op->outputs_, out_format, grad_varmap,
                       out_idx, true);
103 104
    } else {
      // gradients of op_'s outputs_
F
fengjiayi 已提交
105 106
      AddArgIntoGradOp(arg.get(), grad_op->inputs_, in_format, grad_varmap,
                       in_idx, true);
107 108 109 110 111 112 113 114
    }
  }
  grad_op->attrs_["input_format"] = in_format;
  grad_op->attrs_["output_format"] = out_format;
  grad_op->in_out_idxs_.reset(grad_varmap);
}

}  // namespace framework
F
fengjiayi 已提交
115
}  // namespace paddle