test_device_guard.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
from op_test import OpTest

import numpy as np
import paddle.fluid as fluid
import paddle.fluid.core as core
import warnings


def execute(main_program, startup_program):
    if core.is_compiled_with_cuda():
        place = core.CUDAPlace(0)
    else:
        place = core.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_program)
    exe.run(main_program)


class TestDeviceGuard(unittest.TestCase):
    def test_device_guard(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            data1 = fluid.layers.fill_constant(
                shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(
                shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)
            with fluid.device_guard("cpu"):
                shape = fluid.layers.slice(
                    shape, axes=[0], starts=[0], ends=[4])
                with fluid.device_guard("gpu"):
                    out = fluid.layers.crop_tensor(data1, shape=shape)
        # check if the device attr is set correctly
        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            if op.type == 'slice':
                self.assertEqual(op.desc.attr(device_attr_name), "cpu")
            if op.type == 'crop_tensor':
                self.assertEqual(op.desc.attr(device_attr_name), "gpu")

        execute(main_program, startup_program)

    def test_cpu_only_op(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            x = fluid.layers.fill_constant(
                shape=[2, 255, 13, 13], value=0.3, dtype='float32')
            gt_box = fluid.layers.fill_constant(
                shape=[2, 6, 4], value=0.5, dtype='float32')
            gt_label = fluid.layers.fill_constant(
                shape=[2, 6], value=1.0, dtype='int32')
            gt_score = fluid.layers.fill_constant(
                shape=[2, 6], value=0.5, dtype='float32')
            anchors = [
                10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156,
                198, 373, 326
            ]
            anchor_mask = [0, 1, 2]
            with fluid.device_guard("gpu"):
                # yolov3_loss only has cpu kernel, so its cpu kernel will be executed
                loss = fluid.layers.yolov3_loss(
                    x=x,
                    gt_box=gt_box,
                    gt_label=gt_label,
                    gt_score=gt_score,
                    anchors=anchors,
                    anchor_mask=anchor_mask,
                    class_num=80,
                    ignore_thresh=0.7,
                    downsample_ratio=32)

        execute(main_program, startup_program)

    def test_without_kernel_op(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(
                shape=[1], dtype='int64', value=10)
            cond = fluid.layers.less_than(x=i, y=loop_len)

            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                with fluid.device_guard("cpu"):
                    while_op = fluid.layers.While(cond=cond)
                    with while_op.block():
                        i = fluid.layers.increment(x=i, value=1, in_place=True)
                        fluid.layers.less_than(x=i, y=loop_len, cond=cond)

        assert len(w) == 1
        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            if op.type == 'while':
                self.assertEqual(op.desc.attr(device_attr_name), "")

        execute(main_program, startup_program)

    def test_error(self):
        def device_attr():
            with fluid.device_guard("cpu1"):
                out = fluid.layers.fill_constant(
                    shape=[1], value=0.2, dtype='float32')

        self.assertRaises(ValueError, device_attr)

    def test_warning(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                with fluid.device_guard("gpu"):
                    x = fluid.layers.fill_constant(
                        shape=[1], value=3.0, dtype='float32', force_cpu=True)
                    y = fluid.layers.fill_constant(
                        shape=[1], value=4.0, dtype='float32')
                    result = fluid.layers.less_than(x=x, y=y, force_cpu=False)

        assert len(w) == 2
        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            self.assertEqual(op.desc.attr(device_attr_name), "gpu")

147 148
    # check if op_descs have op_device attr
    def test_op_descs_device_attr(self):
149 150 151 152
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            data1 = fluid.layers.data(name="data_1", shape=[2], dtype="float32")
153
            data2 = fluid.layers.data(name="data_2", shape=[2], dtype="float32")
154 155
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            fc1 = fluid.layers.fc(input=data1, size=10)
156
            fc2 = fluid.layers.fc(input=fc1, size=10)
157 158
            with fluid.device_guard("gpu"):
                out = fluid.layers.softmax_with_cross_entropy(
159
                    logits=fc1 + fc2, label=label)
160 161 162 163 164 165 166 167
                loss = fluid.layers.mean(out)
                opt = fluid.optimizer.SGDOptimizer(0.1)
                opt.minimize(loss)

        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            self.assertEqual(True, op.desc.has_attr(device_attr_name))
168 169
            # fill_constant(backward op) is append to mean op, which should have
            # the same op_device value as mean op
170 171 172
            if op.desc == 'fill_constant':
                self.assertEqual(op.desc.attr(device_attr_name), "gpu")

173 174 175

if __name__ == '__main__':
    unittest.main()