custom_tensor_test.cc 12.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "gtest/gtest.h"
17
#include "paddle/fluid/extension/include/ext_all.h"
18 19 20 21 22
#include "paddle/fluid/framework/custom_tensor_utils.h"
#include "paddle/fluid/framework/lod_tensor.h"

template <typename T>
paddle::Tensor InitCPUTensorForTest() {
C
Chen Weihang 已提交
23
  std::vector<int64_t> tensor_shape{5, 5};
24 25 26 27
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  auto* p_data_ptr = t1.mutable_data<T>(paddle::PlaceType::kCPU);
  for (int64_t i = 0; i < t1.size(); i++) {
28
    p_data_ptr[i] = T(5);
29 30 31 32 33 34 35 36 37 38
  }
  return t1;
}

template <typename T>
void TestCopyTensor() {
  auto t1 = InitCPUTensorForTest<T>();
  auto t1_cpu_cp = t1.template copy_to<T>(paddle::PlaceType::kCPU);
  CHECK((paddle::PlaceType::kCPU == t1_cpu_cp.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
39
    CHECK_EQ(t1_cpu_cp.template data<T>()[i], T(5));
40 41 42 43 44 45 46 47
  }
#ifdef PADDLE_WITH_CUDA
  VLOG(2) << "Do GPU copy test";
  auto t1_gpu_cp = t1_cpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
  CHECK((paddle::PlaceType::kGPU == t1_gpu_cp.place()));
  auto t1_gpu_cp_cp = t1_gpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
  CHECK((paddle::PlaceType::kGPU == t1_gpu_cp_cp.place()));
  auto t1_gpu_cp_cp_cpu =
48 49 50 51 52 53 54 55 56 57 58 59 60
      t1_gpu_cp_cp.template copy_to<T>(paddle::PlaceType::kCPU);
  CHECK((paddle::PlaceType::kCPU == t1_gpu_cp_cp_cpu.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
    CHECK_EQ(t1_gpu_cp_cp_cpu.template data<T>()[i], T(5));
  }
#elif defined(PADDLE_WITH_HIP)
  VLOG(2) << "Do HIP copy test";
  auto t1_gpu_cp = t1_cpu_cp.template copy_to<T>(paddle::PlaceType::kHIP);
  CHECK((paddle::PlaceType::kHIP == t1_gpu_cp.place()));
  auto t1_gpu_cp_cp = t1_gpu_cp.template copy_to<T>(paddle::PlaceType::kHIP);
  CHECK((paddle::PlaceType::kHIP == t1_gpu_cp_cp.place()));
  auto t1_gpu_cp_cp_cpu =
      t1_gpu_cp_cp.template copy_to<T>(paddle::PlaceType::kCPU);
61 62
  CHECK((paddle::PlaceType::kCPU == t1_gpu_cp_cp_cpu.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
63
    CHECK_EQ(t1_gpu_cp_cp_cpu.template data<T>()[i], T(5));
64 65 66 67 68
  }
#endif
}

void TestAPIPlace() {
C
Chen Weihang 已提交
69
  std::vector<int64_t> tensor_shape = {5, 5};
70 71 72 73 74
#ifdef PADDLE_WITH_CUDA
  auto t1 = paddle::Tensor(paddle::PlaceType::kGPU);
  t1.reshape(tensor_shape);
  t1.mutable_data<float>();
  CHECK((paddle::PlaceType::kGPU == t1.place()));
75 76 77 78 79
#elif defined(PADDLE_WITH_HIP)
  auto t1 = paddle::Tensor(paddle::PlaceType::kHIP);
  t1.reshape(tensor_shape);
  t1.mutable_data<float>();
  CHECK((paddle::PlaceType::kHIP == t1.place()));
80 81 82 83 84 85 86 87
#endif
  auto t2 = paddle::Tensor(paddle::PlaceType::kCPU);
  t2.reshape(tensor_shape);
  t2.mutable_data<float>();
  CHECK((paddle::PlaceType::kCPU == t2.place()));
}

void TestAPISizeAndShape() {
C
Chen Weihang 已提交
88
  std::vector<int64_t> tensor_shape = {5, 5};
89 90 91 92 93 94
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  CHECK_EQ(t1.size(), 25);
  CHECK(t1.shape() == tensor_shape);
}

H
Hao Lin 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
void TestAPISlice() {
  std::vector<int64_t> tensor_shape_origin1 = {5, 5};
  std::vector<int64_t> tensor_shape_sub1 = {3, 5};
  std::vector<int64_t> tensor_shape_origin2 = {5, 5, 5};
  std::vector<int64_t> tensor_shape_sub2 = {1, 5, 5};
#ifdef PADDLE_WITH_CUDA
  auto t1 = paddle::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin1);
  t1.mutable_data<float>();
  CHECK(t1.slice(0, 5).shape() == tensor_shape_origin1);
  CHECK(t1.slice(0, 3).shape() == tensor_shape_sub1);
  auto t2 = paddle::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin2);
  t2.mutable_data<float>();
  CHECK(t2.slice(4, 5).shape() == tensor_shape_sub2);
#endif
  auto t3 = paddle::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin1);
  t3.mutable_data<float>();
  CHECK(t3.slice(0, 5).shape() == tensor_shape_origin1);
  CHECK(t3.slice(0, 3).shape() == tensor_shape_sub1);
  auto t4 = paddle::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin2);
  t4.mutable_data<float>();
  CHECK(t4.slice(4, 5).shape() == tensor_shape_sub2);

  // Test writing function for sliced tensor
  auto t = InitCPUTensorForTest<float>();
  auto t_sliced = t.slice(0, 1);
  auto* t_sliced_data_ptr = t_sliced.mutable_data<float>();
  for (int64_t i = 0; i < t_sliced.size(); i++) {
    t_sliced_data_ptr[i] += static_cast<float>(5);
  }
  auto* t_data_ptr = t.mutable_data<float>();
  for (int64_t i = 0; i < t_sliced.size(); i++) {
    CHECK_EQ(t_data_ptr[i], static_cast<float>(10));
  }
}

130 131
template <typename T>
paddle::DataType TestDtype() {
C
Chen Weihang 已提交
132
  std::vector<int64_t> tensor_shape = {5, 5};
133 134 135 136 137 138 139 140
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  t1.template mutable_data<T>();
  return t1.type();
}

template <typename T>
void TestCast(paddle::DataType data_type) {
C
Chen Weihang 已提交
141
  std::vector<int64_t> tensor_shape = {5, 5};
142 143 144 145
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  t1.template mutable_data<T>();
  auto t2 = t1.cast(data_type);
146
  CHECK(t2.type() == data_type);
147 148 149 150 151 152 153
}

void GroupTestCopy() {
  VLOG(2) << "Float cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<float>();
  VLOG(2) << "Double cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<double>();
154
  VLOG(2) << "int cpu-cpu-gpu-gpu-cpu";
155 156 157 158 159 160 161 162 163
  TestCopyTensor<int>();
  VLOG(2) << "int64 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int64_t>();
  VLOG(2) << "int16 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int16_t>();
  VLOG(2) << "int8 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int8_t>();
  VLOG(2) << "uint8 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<uint8_t>();
164
  VLOG(2) << "complex<float> cpu-cpu-gpu-gpu-cpu";
165
  TestCopyTensor<paddle::complex64>();
166
  VLOG(2) << "complex<double> cpu-cpu-gpu-gpu-cpu";
167
  TestCopyTensor<paddle::complex128>();
168 169
  VLOG(2) << "Fp16 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<paddle::float16>();
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
}

void GroupTestCast() {
  VLOG(2) << "int cast";
  TestCast<int>(paddle::DataType::FLOAT32);
  VLOG(2) << "int32 cast";
  TestCast<int32_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "int64 cast";
  TestCast<int64_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "double cast";
  TestCast<double>(paddle::DataType::FLOAT32);
  VLOG(2) << "bool cast";
  TestCast<bool>(paddle::DataType::FLOAT32);
  VLOG(2) << "uint8 cast";
  TestCast<uint8_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "float cast";
  TestCast<float>(paddle::DataType::FLOAT32);
187
  VLOG(2) << "complex<float> cast";
188
  TestCast<paddle::complex64>(paddle::DataType::FLOAT32);
189
  VLOG(2) << "complex<double> cast";
190
  TestCast<paddle::complex128>(paddle::DataType::FLOAT32);
191 192
  VLOG(2) << "float16 cast";
  TestCast<paddle::float16>(paddle::DataType::FLOAT16);
193 194 195 196 197 198 199 200 201 202
}

void GroupTestDtype() {
  CHECK(TestDtype<float>() == paddle::DataType::FLOAT32);
  CHECK(TestDtype<double>() == paddle::DataType::FLOAT64);
  CHECK(TestDtype<int>() == paddle::DataType::INT32);
  CHECK(TestDtype<int64_t>() == paddle::DataType::INT64);
  CHECK(TestDtype<int16_t>() == paddle::DataType::INT16);
  CHECK(TestDtype<int8_t>() == paddle::DataType::INT8);
  CHECK(TestDtype<uint8_t>() == paddle::DataType::UINT8);
203 204
  CHECK(TestDtype<paddle::complex64>() == paddle::DataType::COMPLEX64);
  CHECK(TestDtype<paddle::complex128>() == paddle::DataType::COMPLEX128);
205
  CHECK(TestDtype<paddle::float16>() == paddle::DataType::FLOAT16);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
}

void GroupTestDtypeConvert() {
  // enum -> proto
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT64) ==
        paddle::framework::proto::VarType::FP64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT32) ==
        paddle::framework::proto::VarType::FP32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::UINT8) ==
        paddle::framework::proto::VarType::UINT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT8) == paddle::framework::proto::VarType::INT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT32) ==
        paddle::framework::proto::VarType::INT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT64) ==
        paddle::framework::proto::VarType::INT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT16) ==
        paddle::framework::proto::VarType::INT16);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::BOOL) == paddle::framework::proto::VarType::BOOL);
232 233 234 235 236 237
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::COMPLEX64) ==
        paddle::framework::proto::VarType::COMPLEX64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::COMPLEX128) ==
        paddle::framework::proto::VarType::COMPLEX128);
238 239 240
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT16) ==
        paddle::framework::proto::VarType::FP16);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  // proto -> enum
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP64) ==
        paddle::DataType::FLOAT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP32) ==
        paddle::DataType::FLOAT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT64) ==
        paddle::DataType::INT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT32) ==
        paddle::DataType::INT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT8) == paddle::DataType::INT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::UINT8) ==
        paddle::DataType::UINT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT16) ==
        paddle::DataType::INT16);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::BOOL) == paddle::DataType::BOOL);
264 265 266 267 268 269
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::COMPLEX64) ==
        paddle::DataType::COMPLEX64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::COMPLEX128) ==
        paddle::DataType::COMPLEX128);
270 271 272
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP16) ==
        paddle::DataType::FLOAT16);
273 274
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
void TestInitilized() {
  paddle::Tensor test_tensor(paddle::PlaceType::kCPU);
  CHECK(test_tensor.is_initialized() == false);
  test_tensor.reshape({1, 1});
  test_tensor.mutable_data<float>();
  CHECK(test_tensor.is_initialized() == true);
  float* tensor_data = test_tensor.data<float>();
  for (int i = 0; i < test_tensor.size(); i++) {
    tensor_data[i] = 0.5;
  }
  for (int i = 0; i < test_tensor.size(); i++) {
    CHECK(tensor_data[i] == 0.5);
  }
}

290 291 292 293 294 295 296 297 298
TEST(CustomTensor, copyTest) {
  VLOG(2) << "TestCopy";
  GroupTestCopy();
  VLOG(2) << "TestDtype";
  GroupTestDtype();
  VLOG(2) << "TestShape";
  TestAPISizeAndShape();
  VLOG(2) << "TestPlace";
  TestAPIPlace();
H
Hao Lin 已提交
299 300
  VLOG(2) << "TestSlice";
  TestAPISlice();
301 302 303 304
  VLOG(2) << "TestCast";
  GroupTestCast();
  VLOG(2) << "TestDtypeConvert";
  GroupTestDtypeConvert();
305 306
  VLOG(2) << "TestInitilized";
  TestInitilized();
307
}