maxouting.cu 5.9 KB
Newer Older
W
wanghaox 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/maxouting.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {

template <typename MaxOutProcess, typename T>
__global__ void KernelMaxOut(const int nthreads, const T* input_data,
W
wanghaox 已提交
24
                            const int channels,
W
wanghaox 已提交
25
                             const int input_height, const int input_width,
W
wanghaox 已提交
26 27
                             int groups, T* output_data,
                             MaxOutProcess maxout_process) {
W
wanghaox 已提交
28 29
  const int size = input_height * input_width * channels / groups;
  const int feat_len = input_height * input_width;
W
wanghaox 已提交
30 31 32
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
              index += blockDim.x * gridDim.x) {
    int batch_idx = index / size;
W
wanghaox 已提交
33 34 35
    int batch_offset = index % size;
    int channel_idx = batch_offset / feat_len;
    int feat_idx = batch_offset % feat_len;
W
wanghaox 已提交
36
    int data_idx =
W
wanghaox 已提交
37
      (batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
W
wanghaox 已提交
38
    T ele = maxout_process.initial();
W
wanghaox 已提交
39 40
    for (int g = 0; g < groups; ++g) {
      maxout_process.compute(ele, input_data[data_idx + g * feat_len]);
W
wanghaox 已提交
41 42 43 44 45 46 47 48 49
    }
    output_data[index] = ele;
  }
}
template <typename T>
__global__ void KernelMaxoutGrad(
    const int nthreads, const T* input_data, const T* output_data,
    const T* output_grad, T* input_grad, const int channels,
    const int input_height, const int input_width, int groups) {
W
wanghaox 已提交
50 51
    const int size = input_height * input_width * channels / groups;
    const int feat_len = input_height * input_width;
W
wanghaox 已提交
52 53 54
    for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
         index += blockDim.x * gridDim.x) {
      int batch_idx = index / size;
W
wanghaox 已提交
55 56 57
      int batch_offset = index % size;
      int channel_idx = batch_offset / feat_len;
      int feat_idx = batch_offset % feat_len;
W
wanghaox 已提交
58
      int data_idx =
W
wanghaox 已提交
59
        (batch_idx * size + channel_idx * feat_len) * groups + feat_idx;
W
wanghaox 已提交
60 61
      int maxIndex = -1;
      bool stop = false;
W
wanghaox 已提交
62
      for (int g = 0; g < groups && !stop; ++g) {
W
wanghaox 已提交
63 64
        if (input_data[data_idx + g * feat_len] == output_data[index]) {
          maxIndex = data_idx + g * feat_len;
W
wanghaox 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
          stop = true;
        }
      }
      if (maxIndex != -1) {
        // atomic add
        platform::CudaAtomicAdd(input_grad + maxIndex, output_grad[index]);
      }
    }
}
/*
 * All tensors are in NCHW format.
 */
template <typename MaxOutProcess, typename T>
class MaxOutFunctor<platform::GPUPlace, MaxOutProcess, T> {
 public:
  void operator()(const platform::DeviceContext& context,
W
wanghaox 已提交
81 82
                  const framework::Tensor& input, framework::Tensor * output,
                  int groups,
W
wanghaox 已提交
83 84 85 86 87
                  MaxOutProcess maxout_process) {
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
W
wanghaox 已提交
88 89 90
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
W
wanghaox 已提交
91 92

    const T* input_data = input.data<T>();
W
wanghaox 已提交
93 94
    T* output_data = output->mutable_data<T>(context.GetPlace());
    int nthreads =  output->numel();
W
wanghaox 已提交
95 96 97 98 99 100 101 102
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelMaxOut<
        MaxOutProcess,
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
W
wanghaox 已提交
103
                 .stream()>>>(nthreads, input_data, input_channels,
W
wanghaox 已提交
104
                              input_height, input_width, groups,
W
wanghaox 已提交
105
                              output_data, maxout_process);
W
wanghaox 已提交
106 107 108 109 110 111 112 113 114 115 116 117
  }
};
/*
 * All tensors are in NCHW format.
 */
template <typename T>
class MaxOutGradFunctor<platform::GPUPlace, T> {
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad,
W
wanghaox 已提交
118
                  int groups) {
W
wanghaox 已提交
119 120 121 122 123 124 125 126 127 128 129 130
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
W
wanghaox 已提交
131
    int nthreads =  output.numel();
W
wanghaox 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelMaxoutGrad<
        T><<<grid, threads, 0,
             reinterpret_cast<const platform::CUDADeviceContext&>(context)
                 .stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_grad_data,
        input_channels, input_height, input_width, groups);
  }
};

template class MaxOutGradFunctor<platform::GPUPlace, float>;
template class MaxOutGradFunctor<platform::GPUPlace, double>;

template class MaxOutFunctor<platform::GPUPlace,
W
wanghaox 已提交
149
                             math::MaxOut<float>, float>;
W
wanghaox 已提交
150
template class MaxOutFunctor<platform::GPUPlace,
W
wanghaox 已提交
151
                             math::MaxOut<double>, double>;
W
wanghaox 已提交
152 153 154 155

}  // namespace math
}  // namespace operators
}  // namespace paddle