convolution_kernel.cu 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <thrust/execution_policy.h>
#include <thrust/remove.h>
#include <thrust/sort.h>
#include <thrust/unique.h>

#include "glog/logging.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/primitive/compute_primitives.h"
#include "paddle/phi/kernels/sparse/convolution_kernel.h"

namespace phi {
namespace sparse {

// TODO(zhangkaihuo) replace this kernel with KP::InitWithDataIndex
__global__ void InitByIndexKernel(const int n, int* out1, int* out2) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < n; i += gridDim.x * blockDim.x) {
    out1[i] = i;
    out2[i] = i;
  }
}

/**
 * @brief: update the out index and indices
 * unique_keys: save the index of the output feature list
 * unique_values: indiates the index of key before deduplication
 * out_indexs: indicates the position of the output index in the rulebook
 * rulebook_len: indicates the length of rulebook
 * out_dims: indicates the output dims
 * out_indices: the indices of output, out_indices = IndexToPoint(unique_keys)
 * rulebook_out_indexs: the output index in rulebook
**/
__global__ void UpdateIndexKernel(const int* unique_keys,
                                  const int* unique_values,
                                  const int* out_indexs,
                                  const int non_zero_num,
                                  const int rulebook_len,
                                  const Dims4D out_dims,
                                  int* out_indices,
                                  int* rulebook_out_indexs) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    const int index = unique_keys[i];
    int batch, x, y, z;
    IndexToPoint<Dims4D>(index, out_dims, &batch, &x, &y, &z);
    // get out indices
    out_indices[i] = batch;
    out_indices[i + non_zero_num] = z;
    out_indices[i + non_zero_num * 2] = y;
    out_indices[i + non_zero_num * 3] = x;

    // update rulebook
    int start = unique_values[i];
    int end = i == non_zero_num - 1 ? rulebook_len : unique_values[i + 1];
    // max(end-start) = kernel_size
    for (int j = start; j < end; j++) {
      rulebook_out_indexs[out_indexs[j]] = i;
    }
  }
}

/**
 * @brief product rulebook
 * for input_i in x_indices:
 *   if input_i participate in the convolution calculation:
 *       infer the output_i by input_i and kernel_i
 *       save output_i
 *
 * x_indices: the indices of input features
 * x_dims: the input dims
 * kernel_dims: the kernel dims
 * out_dims: the output dims
 * non_zero_num: the number of input features
 * rulebook: the rulebook to save the kernel index, input index and output index
 * counter: save the number of times each location in the kernel participates in
 *the caculation
**/
__global__ void ProductRuleBookKernel(const int* x_indices,
                                      const Dims4D x_dims,
                                      const Dims4D kernel_dims,
                                      const Dims4D out_dims,
                                      const int64_t non_zero_num,
                                      const Dims4D paddings,
                                      const Dims4D dilations,
                                      const Dims4D strides,
                                      int* rulebook,
                                      int* counter) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  extern __shared__ int counter_buf[];  // kernel_size
  const int kernel_size = kernel_dims[3] * kernel_dims[2] * kernel_dims[1];
  const int offset = kernel_size * non_zero_num;
  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    counter_buf[i] = 0;
  }
  __syncthreads();

  for (int i = tid; i < non_zero_num; i += gridDim.x * blockDim.x) {
    int kernel_index = 0;
    for (int kz = 0; kz < kernel_dims[1]; kz++) {
      for (int ky = 0; ky < kernel_dims[2]; ky++) {
        for (int kx = 0; kx < kernel_dims[3]; kx++) {
          int batch = x_indices[i];
          int in_z = x_indices[i + non_zero_num];
          int in_y = x_indices[i + 2 * non_zero_num];
          int in_x = x_indices[i + 3 * non_zero_num];
          int in_i = -1, out_index = -1;
          if (Check(x_dims,
                    kernel_dims,
                    paddings,
                    dilations,
                    strides,
                    in_x,
                    in_y,
                    in_z,
                    kx,
                    ky,
                    kz)) {
            int out_z = (in_z + paddings[1] - kz * dilations[1]) / strides[1];
            int out_y = (in_y + paddings[2] - ky * dilations[2]) / strides[2];
            int out_x = (in_x + paddings[3] - kx * dilations[3]) / strides[3];
            in_i = i;
            out_index =
                PointToIndex<Dims4D>(batch, out_x, out_y, out_z, out_dims);
            atomicAdd(&counter_buf[kernel_index], 1);
          }
          rulebook[kernel_index * non_zero_num + i] = in_i;
          rulebook[kernel_index * non_zero_num + offset + i] = out_index;
          ++kernel_index;
        }
      }
    }
  }
  __syncthreads();
  for (int i = threadIdx.x; i < kernel_size; i += blockDim.x) {
    atomicAdd(&counter[i], counter_buf[i]);
  }
}

// TODO(zhangkaihuo): After the GatherCUDAKernel is migrated to phi, replace
// this kernel with phi::GatherCUDAKernel;
// Vectorization can be used to improve read and write bandwidth
/**
 * brief: gather data from params according to indices
 * params: the inputs
 * indices: the indices you want to gather
 * output: the outputs
 * index_size: the size of indices
 * slice_size: slice size corresponding to each index, here is the channel size
**/
template <typename T, typename IndexT = int>
__global__ void GatherKernel(const T* params,
                             const IndexT* indices,
                             T* output,
                             size_t index_size,
                             size_t slice_size) {
  CUDA_KERNEL_LOOP_TYPE(i, index_size * slice_size, int64_t) {
    int64_t indices_i = i / slice_size;
    int64_t slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT gather_i = indices[indices_i];
    int64_t params_i = gather_i * slice_size + slice_i;
    *(output + i) = *(params + params_i);
  }
}

/**
 * brief: scatter add
 * input: the inputs
 * unique_value: refer to UpdateIndexKernel notes
 * out_index: the output feature index
 * non_zero_num: the number of output features
 * rulebook_len: the length of rulebook
 * channels: the output channel size
 * out: the outputs
**/
template <typename T>
__global__ void ScatterKernel(const T* input,
                              const int* unique_value,
                              const int* out_index,
                              const int non_zero_num,
                              const int rulebook_len,
                              const int channels,
                              T* out) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  for (int i = tid; i < non_zero_num * channels; i += gridDim.x * blockDim.x) {
    int indices_i = i / channels;
    int channels_i = i - indices_i * channels;

    int start = unique_value[indices_i];
    int end = indices_i == non_zero_num - 1 ? rulebook_len
                                            : unique_value[indices_i + 1];
    // max(end-start) = kernel_size
    T sum = static_cast<T>(0);
    for (int j = start; j < end; j++) {
      const int out_feature_i = out_index[j];
      sum += input[out_feature_i * channels + channels_i];
    }
    out[indices_i * channels + channels_i] = sum;
  }
}

// brief: calculation the distance between start and end
__global__ void DistanceKernel(const int* start,
                               const int* end,
                               int* distance) {
  if (threadIdx.x == 0) {
    *distance = end - start;
  }
}

// the basic algorithm can refer to convolution_kernel.cc or
// the second paper
// example:
// 1. the rulebook:
//  the kernel_index:                       0, 0, 0, 1, 1, 1, 2, 2, ....
//  the out_index(key):                     20, 30, 33, 30, 33, 20, 25
// 2. mark the index of out_index(value):   0, 1, 2, 3, 4, 5, 6, ....
// 3. sorted the (key, value)
// 4. unique the (key, value):
//  unique_key:     20, 25, 30, 33
//  unique_values:  0, 2, 3, 5
//  the index of unique_values is: 0, 1, 2, 3
// 5. update the out_index by unique_key, uniqe_value and the index of
// unique_value:
//  the new out_index: 0, 2, 3, 2, 3, 0, 1
template <typename T, typename Context>
int ProductRuleBook(const Context& dev_ctx,
                    const SparseCooTensor& x,
                    const DenseTensor& kernel,
                    const std::vector<int>& paddings,
                    const std::vector<int>& dilations,
                    const std::vector<int>& strides,
                    const DDim& out_dims,
                    DenseTensor* rulebook,
                    DenseTensor* counter_per_kernel,
                    DenseTensor* offsets_per_kernel,
                    DenseTensor* out_index,
                    DenseTensor* unique_key,
                    DenseTensor* unique_value,
                    SparseCooTensor* out,
                    std::vector<int>* h_counter,
                    std::vector<int>* h_offsets) {
  const auto& kernel_dims = kernel.dims();
  const int64_t non_zero_num = x.nnz();
  const auto& non_zero_indices = x.non_zero_indices();
  const int* indices_ptr = non_zero_indices.data<int>();
  dev_ctx.Alloc(counter_per_kernel,
                counter_per_kernel->dtype(),
                sizeof(int) * counter_per_kernel->numel());
  int* counter_ptr = counter_per_kernel->data<int>();
  dev_ctx.Alloc(offsets_per_kernel,
                offsets_per_kernel->dtype(),
                sizeof(int) * offsets_per_kernel->numel());
  int* offsets_ptr = offsets_per_kernel->data<int>();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  rulebook->ResizeAndAllocate({2, kernel_size * non_zero_num});
  dev_ctx.Alloc(rulebook, rulebook->dtype(), sizeof(int) * rulebook->numel());
  int* rulebook_ptr = rulebook->data<int>();

  const auto x_dims = x.dims();
  Dims4D d_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
  Dims4D d_kernel_dims(1, kernel_dims[2], kernel_dims[1], kernel_dims[0]);
  Dims4D d_out_dims(out_dims[0], out_dims[3], out_dims[2], out_dims[1]);
  Dims4D d_paddings(1, paddings[2], paddings[1], paddings[0]);
  Dims4D d_strides(1, strides[2], strides[1], strides[0]);
  Dims4D d_dilations(1, dilations[2], dilations[1], dilations[0]);

  // 1. product rule book
  phi::funcs::SetConstant<Context, int> set_zero;
  set_zero(dev_ctx, counter_per_kernel, 0);
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num, 1);

  ProductRuleBookKernel<<<config.block_per_grid.x,
                          config.thread_per_block.x,
                          kernel_size * sizeof(int),
                          dev_ctx.stream()>>>(indices_ptr,
                                              d_x_dims,
                                              d_kernel_dims,
                                              d_out_dims,
                                              non_zero_num,
                                              d_paddings,
                                              d_dilations,
                                              d_strides,
                                              rulebook_ptr,
                                              counter_ptr);

// 2. remove -1
#ifdef PADDLE_WITH_HIP
  int* last = thrust::remove(thrust::hip::par.on(dev_ctx.stream()),
#else
  int* last = thrust::remove(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                             rulebook_ptr,
                             rulebook_ptr + 2 * kernel_size * non_zero_num,
                             -1);

#ifdef PADDLE_WITH_HIP
  thrust::exclusive_scan(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::exclusive_scan(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                         counter_ptr,
                         counter_ptr + kernel_size,
                         offsets_ptr);

#ifdef PADDLE_WITH_HIP
  phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
                                     counter_ptr,
                                     kernel_size * sizeof(int),
                                     hipMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
                                     offsets_ptr,
                                     kernel_size * sizeof(int),
                                     hipMemcpyDeviceToHost,
                                     dev_ctx.stream());
#else
  phi::backends::gpu::GpuMemcpyAsync(&(*h_counter)[0],
                                     counter_ptr,
                                     kernel_size * sizeof(int),
                                     cudaMemcpyDeviceToHost,
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemcpyAsync(&(*h_offsets)[0],
                                     offsets_ptr,
                                     kernel_size * sizeof(int),
                                     cudaMemcpyDeviceToHost,
                                     dev_ctx.stream());
#endif
  dev_ctx.Wait();
  int rulebook_len =
      (*h_counter)[kernel_size - 1] + (*h_offsets)[kernel_size - 1];

  // 3. sorted or merge the out index
  out_index->ResizeAndAllocate({rulebook_len});
  unique_value->ResizeAndAllocate({rulebook_len});
  unique_key->ResizeAndAllocate({rulebook_len});
  dev_ctx.Alloc(
      out_index, out_index->dtype(), sizeof(int) * out_index->numel());
  int* out_index_ptr = out_index->data<int>();
  dev_ctx.Alloc(
      unique_value, unique_value->dtype(), sizeof(int) * unique_value->numel());
  int* unique_value_ptr = unique_value->data<int>();
  dev_ctx.Alloc(
      unique_key, unique_key->dtype(), sizeof(int) * unique_key->numel());
  int* unique_key_ptr = unique_key->data<int>();

  config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rulebook_len, 1);
  InitByIndexKernel<<<config.block_per_grid.x,
                      config.thread_per_block.x,
                      0,
                      dev_ctx.stream()>>>(
      rulebook_len, out_index_ptr, unique_value_ptr);

#ifdef PADDLE_WITH_HIP
  phi::backends::gpu::GpuMemcpyAsync(unique_key_ptr,
                                     rulebook_ptr + rulebook_len,
                                     rulebook_len * sizeof(int),
                                     hipMemcpyDeviceToDevice,
                                     dev_ctx.stream());
#else
  phi::backends::gpu::GpuMemcpyAsync(unique_key_ptr,
                                     rulebook_ptr + rulebook_len,
                                     rulebook_len * sizeof(int),
                                     cudaMemcpyDeviceToDevice,
                                     dev_ctx.stream());
#endif

// compared with thrust::sort_by_key, thrust::merge_by_key may achieved higher
// performance, but thrust::merge_by_key limited by data size
#ifdef PADDLE_WITH_HIP
  thrust::sort_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
  thrust::sort_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                      unique_key_ptr,
                      unique_key_ptr + rulebook_len,
                      out_index_ptr);

  // 4. unique
  thrust::pair<int*, int*> new_end =
#ifdef PADDLE_WITH_HIP
      thrust::unique_by_key(thrust::hip::par.on(dev_ctx.stream()),
#else
      thrust::unique_by_key(thrust::cuda::par.on(dev_ctx.stream()),
#endif
                            unique_key_ptr,
                            unique_key_ptr + rulebook_len,
                            unique_value_ptr);
  // thrust::distance doesn't support stream parameters
  // const int out_non_zero_num = thrust::distance(unique_key_ptr,
  // new_end.first);
  DistanceKernel<<<1, 1>>>(unique_key_ptr,
                           new_end.first,
                           rulebook_ptr + 2 * kernel_size * non_zero_num - 1);
  int out_non_zero_num = 0;
#ifdef PADDLE_WITH_HIP
  phi::backends::gpu::GpuMemcpyAsync(
      &out_non_zero_num,
      rulebook_ptr + 2 * kernel_size * non_zero_num - 1,
      sizeof(int),
      hipMemcpyDeviceToHost,
      dev_ctx.stream());
#else
  phi::backends::gpu::GpuMemcpyAsync(
      &out_non_zero_num,
      rulebook_ptr + 2 * kernel_size * non_zero_num - 1,
      sizeof(int),
      cudaMemcpyDeviceToHost,
      dev_ctx.stream());
#endif
  dev_ctx.Wait();

  // 5. update out_indices and rulebook by unique_value_ptr
  const int64_t sparse_dim = 4;
  DenseTensorMeta indices_meta(
      DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
  DenseTensorMeta values_meta(
      x.dtype(), {out_non_zero_num, kernel_dims[4]}, x.layout());
  phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));

  dev_ctx.Alloc(
      &out_indices, out_indices.dtype(), sizeof(int) * out_indices.numel());
  int* out_indices_ptr = out_indices.data<int>();

  config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, out_non_zero_num, 1);
  UpdateIndexKernel<<<config.block_per_grid.x,
                      config.thread_per_block.x,
                      0,
                      dev_ctx.stream()>>>(unique_key_ptr,
                                          unique_value_ptr,
                                          out_index_ptr,
                                          out_non_zero_num,
                                          rulebook_len,
                                          d_out_dims,
                                          out_indices_ptr,
                                          rulebook_ptr + rulebook_len);
  out->SetMember(out_indices, out_values, out_dims, true);
  return rulebook_len;
}

/**
 * x: (N, D, H, W, C)
 * kernel: (D, H, W, C, OC)
 * out: (N, D, H, W, OC)
**/
template <typename T, typename Context>
void Conv3dKernel(const Context& dev_ctx,
                  const SparseCooTensor& x,
                  const DenseTensor& kernel,
                  const std::vector<int>& paddings,
                  const std::vector<int>& dilations,
                  const std::vector<int>& strides,
                  const int groups,
                  SparseCooTensor* out,
                  DenseTensor* rulebook) {
  // update padding and dilation
  // Currently, only support x.layout is NDHWC, groups = 1
  // if x.layout != NDHWC then transpose(x), transpose(weight)

  const auto& x_dims = x.dims();
  const auto& kernel_dims = kernel.dims();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  DDim out_dims = {1, 1, 1, 1, 1};
  GetOutShape(x_dims, kernel_dims, paddings, dilations, strides, &out_dims);
  out->set_dims(out_dims);
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];
  std::vector<int> offsets(kernel_size + 1), h_counter(kernel_size);

  // Second algorithm:
  // https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
  // 1. product rulebook
  DenseTensorMeta counter_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensorMeta offsets_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));
  DenseTensor offsets_per_kernel = phi::Empty(dev_ctx, std::move(offsets_meta));
  DenseTensor out_index = phi::Empty<int, Context>(dev_ctx);
  DenseTensor unique_key = phi::Empty<int, Context>(dev_ctx);
  DenseTensor unique_value = phi::Empty<int, Context>(dev_ctx);

  int n = ProductRuleBook<T, Context>(dev_ctx,
                                      x,
                                      kernel,
                                      paddings,
                                      dilations,
                                      strides,
                                      out_dims,
                                      rulebook,
                                      &counter_per_kernel,
                                      &offsets_per_kernel,
                                      &out_index,
                                      &unique_key,
                                      &unique_value,
                                      out,
                                      &h_counter,
                                      &offsets);

  const int* counter_ptr = counter_per_kernel.data<int>();
  const int* offsets_ptr = counter_per_kernel.data<int>();

  // 2. gather
  DenseTensorMeta in_features_meta(
      x.dtype(), {n, in_channels}, DataLayout::NCHW);
  DenseTensorMeta out_features_meta(
      x.dtype(), {n, out_channels}, DataLayout::NCHW);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor out_features =
      phi::Empty(dev_ctx, std::move(out_features_meta));
  dev_ctx.Alloc(
      &in_features, in_features.dtype(), sizeof(T) * in_features.numel());
  T* in_features_ptr = in_features.data<T>();
  dev_ctx.Alloc(
      &out_features, out_features.dtype(), sizeof(T) * out_features.numel());
  T* out_features_ptr = out_features.data<T>();

  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, n * in_channels, 1);
  GatherKernel<T, int><<<config.block_per_grid.x,
                         config.thread_per_block.x,
                         0,
                         dev_ctx.stream()>>>(x.non_zero_elements().data<T>(),
                                             rulebook->data<int>(),
                                             in_features_ptr,
                                             n,
                                             in_channels);

  // 3. call gemm for every werght
  auto blas = phi::funcs::GetBlas<Context, T>(dev_ctx);
  auto* out_values = out->mutable_non_zero_elements();
  dev_ctx.Alloc(
      out_values, out_values->dtype(), sizeof(T) * out_values->numel());
  T* out_values_ptr = out_values->data<T>();

  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
    if (h_counter[i] <= 0) {
      continue;
    }

    // call gemm: (n, in_channels) * (in_channels, out_channels)
    const int M = h_counter[i];
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * K * N;
    T* tmp_out_ptr = out_features_ptr + offsets[i] * out_channels;

    blas.GEMM(CblasNoTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_out_ptr);
  }

  // 4. scatter
  config = phi::backends::gpu::GetGpuLaunchConfig1D(
      dev_ctx, out->nnz() * out_channels, 1);
  ScatterKernel<T><<<config.block_per_grid.x,
                     config.thread_per_block.x,
                     0,
                     dev_ctx.stream()>>>(out_features_ptr,
                                         unique_value.data<int>(),
                                         out_index.data<int>(),
                                         out->nnz(),
                                         n,
                                         out_channels,
                                         out_values_ptr);
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(sparse_conv3d,
                   GPU,
                   ALL_LAYOUT,
                   phi::sparse::Conv3dKernel,
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}