parallel_dygraph_mnist.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.fluid as fluid
19
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
20 21 22 23 24 25
from paddle.fluid.dygraph.base import to_variable

from test_dist_base import runtime_main, TestParallelDyGraphRunnerBase


class SimpleImgConvPool(fluid.dygraph.Layer):
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        pool_size,
        pool_stride,
        pool_padding=0,
        pool_type='max',
        global_pooling=False,
        conv_stride=1,
        conv_padding=0,
        conv_dilation=1,
        conv_groups=1,
        act=None,
        use_cudnn=False,
        param_attr=None,
        bias_attr=None,
    ):
45
        super().__init__()
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        self._conv2d = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn,
        )

        self._pool2d = Pool2D(
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn,
        )
68 69 70 71 72 73 74 75

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
76
    def __init__(self):
77
        super().__init__()
78

79 80 81
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            1, 20, 5, 2, 2, act="relu"
        )
82

83 84 85
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            20, 50, 5, 2, 2, act="relu"
        )
86

87
        self.pool_2_shape = 50 * 4 * 4
88
        SIZE = 10
89 90 91 92 93 94 95 96 97 98 99
        scale = (2.0 / (self.pool_2_shape**2 * SIZE)) ** 0.5
        self._fc = Linear(
            self.pool_2_shape,
            10,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.NormalInitializer(
                    loc=0.0, scale=scale
                )
            ),
            act="softmax",
        )
100

Y
Yan Xu 已提交
101
    def forward(self, inputs, label):
102 103
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
104
        x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape])
Y
Yan Xu 已提交
105 106
        cost = self._fc(x)
        loss = fluid.layers.cross_entropy(cost, label)
107
        avg_loss = paddle.mean(loss)
Y
Yan Xu 已提交
108
        return avg_loss
109 110 111 112


class TestMnist(TestParallelDyGraphRunnerBase):
    def get_model(self):
113
        model = MNIST()
114 115 116 117 118 119
        train_reader = paddle.batch(
            paddle.dataset.mnist.train(), batch_size=2, drop_last=True
        )
        opt = paddle.optimizer.Adam(
            learning_rate=1e-3, parameters=model.parameters()
        )
120 121 122 123
        return model, train_reader, opt

    def run_one_loop(self, model, opt, data):
        batch_size = len(data)
124 125 126 127 128 129 130 131
        dy_x_data = np.array([x[0].reshape(1, 28, 28) for x in data]).astype(
            'float32'
        )
        y_data = (
            np.array([x[1] for x in data])
            .astype('int64')
            .reshape(batch_size, 1)
        )
132 133 134 135
        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True

Y
Yan Xu 已提交
136 137
        avg_loss = model(img, label)

138 139 140 141 142
        return avg_loss


if __name__ == "__main__":
    runtime_main(TestMnist)