test_rnn_op.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import sys
17
import unittest
18

19
import numpy as np
20 21
from op_test import OpTest

22 23 24
import paddle
import paddle.fluid.core as core

25 26
sys.path.append("./rnn")
from convert import get_params_for_net
27
from rnn_numpy import LSTM
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

random.seed(2)
np.set_printoptions(threshold=np.inf)
paddle.enable_static()


class TestRNNOp(OpTest):
    def get_weight_names(self):
        weight_names = []
        for i in range(self.num_layers):
            for j in range(0, 2 * self.direction_num):
                weight_names.append("{}.weight_{}".format(i, j))
        for i in range(self.num_layers):
            for j in range(0, 2 * self.direction_num):
                weight_names.append("{}.bias_{}".format(i, j))
        return weight_names

    def setUp(self):
        self.op_type = "rnn"
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
48 49 50 51 52
        self.sequence_length = (
            None
            if core.is_compiled_with_rocm()
            else np.array([12, 11, 10, 9, 8], dtype=np.int32)
        )
53 54 55 56 57 58 59 60 61 62 63 64 65 66
        self.num_layers = 1
        self.is_bidirec = False
        self.mode = "LSTM"
        self.is_test = False
        self.dropout = 0.0
        self.set_attrs()

        self.direction_num = 2 if self.is_bidirec else 1
        direction = "bidirectional" if self.is_bidirec else "forward"
        seq_length = 12
        batch_size = 5
        input_size = 3
        hidden_size = 2

67 68 69
        input = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_length, batch_size, input_size)
        ).astype(self.dtype)
70 71 72 73 74 75
        if self.sequence_length is not None:
            input[11][1:][:] = 0
            input[10][2:][:] = 0
            input[9][3:][:] = 0
            input[8][4:][:] = 0

76 77 78 79 80 81 82 83 84
        rnn1 = LSTM(
            input_size,
            hidden_size,
            num_layers=self.num_layers,
            time_major=True,
            direction=direction,
            dropout=self.dropout,
            dtype=self.dtype,
        )
85 86

        flat_w = get_params_for_net(rnn1)
87 88 89
        output, (last_hidden, last_cell) = rnn1(
            input, sequence_length=self.sequence_length
        )
90 91 92 93 94 95 96 97 98

        if core.is_compiled_with_rocm():

            def rocm_rnn_get_place():
                places = [core.CUDAPlace(0)]
                return places

            self._get_places = rocm_rnn_get_place

99 100 101 102 103 104
        init_h = np.zeros(
            (self.num_layers * self.direction_num, batch_size, hidden_size)
        ).astype(self.dtype)
        init_c = np.zeros(
            (self.num_layers * self.direction_num, batch_size, hidden_size)
        ).astype(self.dtype)
105 106 107 108 109 110
        state_out = np.ndarray((300)).astype("uint8")

        self.inputs = {
            'Input': input,
            'WeightList': flat_w,
            'PreState': [('init_h', init_h), ('init_c', init_c)],
111
            'SequenceLength': self.sequence_length,
112 113 114 115 116 117 118 119 120 121 122 123 124 125
        }
        if self.sequence_length is None:
            self.inputs = {
                'Input': input,
                'WeightList': flat_w,
                'PreState': [('init_h', init_h), ('init_c', init_c)],
            }
        self.attrs = {
            'dropout_prob': self.dropout,
            'is_bidirec': self.is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': self.num_layers,
            'mode': self.mode,
126
            'is_test': self.is_test,
127 128 129 130 131
        }
        self.outputs = {
            'Out': output,
            "State": [('last_hidden', last_hidden), ('last_cell', last_cell)],
            'Reserve': np.ndarray((400)).astype("uint8"),
132
            'DropoutState': state_out,
133 134 135 136 137 138 139 140 141 142 143 144 145
        }

    def test_output(self):
        self.check_output(no_check_set=['Reserve', 'DropoutState'])

    def set_attrs(self):
        pass

    def test_grad(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['Input', 'init_h', 'init_c']
            grad_check_list.extend(var_name_list)
146 147 148
            self.check_grad(
                set(grad_check_list), ['Out', 'last_hidden', 'last_cell']
            )
149

Y
YuanRisheng 已提交
150 151 152 153 154
    def test_grad_only_input(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['Input']
            grad_check_list.extend(var_name_list)
155 156 157
            self.check_grad(
                set(grad_check_list), ['Out', 'last_hidden', 'last_cell']
            )
Y
YuanRisheng 已提交
158 159 160 161 162 163

    def test_grad_only_h(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['init_h']
            grad_check_list.extend(var_name_list)
164 165 166
            self.check_grad(
                set(grad_check_list), ['Out', 'last_hidden', 'last_cell']
            )
Y
YuanRisheng 已提交
167 168 169 170 171 172

    def test_grad_only_c(self):
        if not self.is_test:
            var_name_list = self.get_weight_names()
            grad_check_list = ['init_c']
            grad_check_list.extend(var_name_list)
173 174 175
            self.check_grad(
                set(grad_check_list), ['Out', 'last_hidden', 'last_cell']
            )
Y
YuanRisheng 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

class TestRNNOp1(TestRNNOp):
    def set_attrs(self):
        self.sequence_length = None


class TestRNNOp2(TestRNNOp):
    def set_attrs(self):
        self.sequence_length = None
        self.is_bidirec = True


class TestRNNOp3(TestRNNOp):
    def set_attrs(self):
        self.is_test = True
        self.sequence_length = None


class TestRNNOp4(TestRNNOp):
    def set_attrs(self):
        self.is_test = True
        self.sequence_length = None
        self.is_bidirec = True


class TestRNNOp5(TestRNNOp):
    def set_attrs(self):
        self.num_layers = 2


class TestRNNOp6(TestRNNOp):
    def set_attrs(self):
        self.num_layers = 2
        self.is_bidirec = True


class TestRNNOp7(TestRNNOp):
    def set_attrs(self):
        self.num_layers = 2
        self.is_bidirec = True
        self.is_test = True


class TestRNNOp8(TestRNNOp):
    def set_attrs(self):
        self.num_layers = 2
        self.is_bidirec = True
        self.sequence_length = None


class TestRNNOp9(TestRNNOp):
    def set_attrs(self):
        self.num_layers = 3


if __name__ == '__main__':
    unittest.main()