pooling.cc 19.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/pooling.h"

namespace paddle {
namespace operators {
namespace math {

template <typename PoolProcess, typename T>
C
chengduoZH 已提交
22
class Pool2dFunctor<platform::CPUPlace, PoolProcess, T> {
23
 public:
24 25
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
26
                  std::vector<int>& ksize, std::vector<int>& strides,
C
chengduoZH 已提交
27
                  std::vector<int>& paddings, PoolProcess pool_compute) {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
45
    T* output_data = output.mutable_data<T>(context.GetPlace());
46 47 48 49 50 51 52 53 54 55 56

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
C
chengduoZH 已提交
57
            T ele = pool_compute.initial();
58 59
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
C
chengduoZH 已提交
60
                pool_compute.compute(ele, input_data[h * input_width + w]);
61 62 63
              }
            }
            int pool_size = (hend - hstart) * (wend - wstart);
C
chengduoZH 已提交
64
            pool_compute.finalize(ele, (static_cast<T>(pool_size)));
65 66 67 68 69 70 71 72 73 74 75
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

template <typename PoolProcess, class T>
C
chengduoZH 已提交
76
class Pool2dGradFunctor<platform::CPUPlace, PoolProcess, T> {
77
 public:
78 79
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
80 81 82
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
C
chengduoZH 已提交
83
                  PoolProcess pool_compute) {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
102
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
103 104 105 106 107 108 109 110 111 112 113 114

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);
            int pool_size = (hend - hstart) * (wend - wstart);
115
            float scale = 1.0 / pool_size;
116 117
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
C
chengduoZH 已提交
118 119 120 121 122
                pool_compute.compute(input_data[h * input_width + w],
                                     output_data[ph * output_width + pw],
                                     output_grad_data[ph * output_width + pw],
                                     input_grad_data[h * input_width + w],
                                     static_cast<T>(scale));
123 124 125 126 127 128 129 130 131 132 133 134 135
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

136
template <class T>
C
chengduoZH 已提交
137
class MaxPool2dGradFunctor<platform::CPUPlace, T> {
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
template class MaxPool2dGradFunctor<platform::CPUPlace, float>;
// template class MaxPool2dGradFunctor<platform::CPUPlace, double>;

template class Pool2dFunctor<platform::CPUPlace,
                             paddle::operators::math::maxPool<float>, float>;
template class Pool2dFunctor<platform::CPUPlace,
                             paddle::operators::math::avgPool<float>, float>;
template class Pool2dGradFunctor<
    platform::CPUPlace, paddle::operators::math::maxPoolGrad<float>, float>;
template class Pool2dGradFunctor<
    platform::CPUPlace, paddle::operators::math::avgPoolGrad<float>, float>;
template class Pool2dFunctor<platform::CPUPlace,
                             paddle::operators::math::maxPool<double>, double>;
template class Pool2dFunctor<platform::CPUPlace,
                             paddle::operators::math::avgPool<double>, double>;
template class Pool2dGradFunctor<
    platform::CPUPlace, paddle::operators::math::maxPoolGrad<double>, double>;
template class Pool2dGradFunctor<
    platform::CPUPlace, paddle::operators::math::avgPoolGrad<double>, double>;
216 217

template <typename PoolProcess, class T>
C
chengduoZH 已提交
218
class Pool3dFunctor<platform::CPUPlace, PoolProcess, T> {
219
 public:
220 221
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& output,
222
                  std::vector<int>& ksize, std::vector<int>& strides,
C
chengduoZH 已提交
223
                  std::vector<int>& paddings, PoolProcess pool_compute) {
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
246
    T* output_data = output.mutable_data<T>(context.GetPlace());
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
263
              T ele = pool_compute.initial();
264 265 266
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
C
chengduoZH 已提交
267
                    pool_compute.compute(
268 269 270 271 272 273 274
                        ele,
                        input_data[(d * input_height + h) * input_width + w]);
                  }
                }
              }
              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
C
chengduoZH 已提交
275
              pool_compute.finalize(ele, static_cast<T>(pool_size));
276 277 278 279 280 281 282 283 284 285 286 287
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
};

template <typename PoolProcess, class T>
C
chengduoZH 已提交
288
class Pool3dGradFunctor<platform::CPUPlace, PoolProcess, T> {
289
 public:
290 291
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
292 293 294
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings,
C
chengduoZH 已提交
295
                  PoolProcess pool_compute) {
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
319
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);

            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              int pool_size =
                  (dend - dstart) * (hend - hstart) * (wend - wstart);
339
              float scale = 1.0 / pool_size;
340 341 342 343 344 345
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
346
                    pool_compute.compute(
347 348
                        input_data[input_idx], output_data[output_idx],
                        output_grad_data[output_idx],
349
                        input_grad_data[input_idx], static_cast<T>(scale));
350 351 352 353 354 355
                  }
                }
              }
            }
          }
        }
356 357 358 359
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
360 361 362 363 364
      }
    }
  }
};

365
template <class T>
C
chengduoZH 已提交
366
class MaxPool3dGradFunctor<platform::CPUPlace, T> {
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
 public:
  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor& input_grad,
                  const framework::Tensor& output,
                  const framework::Tensor& output_grad, std::vector<int>& ksize,
                  std::vector<int>& strides, std::vector<int>& paddings) {
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
template class MaxPool3dGradFunctor<platform::CPUPlace, float>;
// template class MaxPool3dGradFunctor<platform::CPUPlace, double>;

template class Pool3dFunctor<platform::CPUPlace,
                             paddle::operators::math::maxPool<float>, float>;
template class Pool3dFunctor<platform::CPUPlace,
                             paddle::operators::math::avgPool<float>, float>;
template class Pool3dGradFunctor<
    platform::CPUPlace, paddle::operators::math::maxPoolGrad<float>, float>;
template class Pool3dGradFunctor<
    platform::CPUPlace, paddle::operators::math::avgPoolGrad<float>, float>;
template class Pool3dFunctor<platform::CPUPlace,
                             paddle::operators::math::maxPool<double>, double>;
template class Pool3dFunctor<platform::CPUPlace,
                             paddle::operators::math::avgPool<double>, double>;
template class Pool3dGradFunctor<
    platform::CPUPlace, paddle::operators::math::maxPoolGrad<double>, double>;
template class Pool3dGradFunctor<
    platform::CPUPlace, paddle::operators::math::avgPoolGrad<double>, double>;
459 460 461
}  // namespace math
}  // namespace operators
}  // namespace paddle