ModelConfig.proto 19.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
syntax = "proto2";
15 16 17 18 19 20 21 22

import "ParameterConfig.proto";

package paddle;

/**
 * Various structs for the configuration of a neural network
 */
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
message ExternalConfig {
  repeated string layer_names = 1;
  repeated string input_layer_names = 2;
  repeated string output_layer_names = 3;
}

message ActivationConfig {
  // identity: f(x) = x
  // sigmoid: f(x) = 1 / (1 + exp(-x))
  // logistic: f(x) = (1 - exp(-x)) / (1+ exp(-x))
  // softmax: y_i = f(x_i) = exp(x_i) / (\sum_i exp(x_i))
  // relu: y = max(0, x)
  required string type = 1;
};

message ConvConfig {
  // filter_size = 5, says that this layer will use
  // filters of size 5x5 pixels.
  required uint32 filter_size = 1;

  // The image data dimensionality.
  // This value must be either 1, 2, 3, or a multiple of 4.
  required uint32 channels = 2;

  // stride = 1, indicates that the distance between
  // successive filter applications should be 1 pixel.
  required uint32 stride = 3;

  // padding = 4, instructs the net to implicitly
  // pad the images with a 4-pixel border of zeros.
  required uint32 padding = 4;

  // If groups = 4 together with the filters = 32 parameter,
  // they state that this convolutional layer is to have 4
  // groups of 32 filters. Each filter will connect to 8
  // input channels.
  required uint32 groups = 5;
  required uint32 filter_channels = 6;

  // The size of output feature map.
  required uint32 output_x = 7;

  // The size of input feature map.
  required uint32 img_size = 8;

  // caffe mode for output size coherence
70
  required bool caffe_mode = 9 [ default = true ];
71 72 73 74 75 76 77 78

  // if filter_size_y is set , this convolutional layer will use
  // filters of size filter_size * filter_size_y pixels.
  // if filter_size_y is not set, this convolutional layer will use
  // filters of size filter_size * filter_size
  required uint32 filter_size_y = 10;
  required uint32 padding_y = 11;
  required uint32 stride_y = 12;
79 80

  // if not set, use output_x
81
  optional uint32 output_y = 13;
82 83

  // if not set, use img_size
84
  optional uint32 img_size_y = 14;
85

W
wanghaoshuang 已提交
86 87
  optional uint32 dilation = 15 [ default = 1 ];
  optional uint32 dilation_y = 16 [ default = 1 ];
C
chengduoZH 已提交
88 89 90 91 92 93

  optional uint32 filter_size_z = 17 [ default = 1 ];
  optional uint32 padding_z = 18 [ default = 1 ];
  optional uint32 stride_z = 19 [ default = 1 ];
  optional uint32 output_z = 20 [ default = 1 ];
  optional uint32 img_size_z = 21 [ default = 1 ];
94 95 96 97 98 99 100 101 102 103 104 105
}

message PoolConfig {
  // max or avg pooling
  required string pool_type = 1;
  required uint32 channels = 2;

  // Defines the size of the pooling region in
  // the x (equivalently, y) dimension.
  required uint32 size_x = 3;

  // Tell the net where in the input image to start the pooling.
106 107
  // start is deprecated now.
  optional uint32 start = 4;
108 109

  // Defines the stride size between successive pooling squares.
110
  required uint32 stride = 5 [ default = 1 ];
111 112 113 114 115 116 117 118 119

  // The size of output feature map.
  required uint32 output_x = 6;

  // The size of input feature map.
  required uint32 img_size = 7;

  // padding = 4, instructs the net to implicitly
  // pad the images with a 4-pixel border of zeros.
120
  optional uint32 padding = 8 [ default = 0 ];
121 122

  // if not set, use size_x
D
dangqingqing 已提交
123
  optional uint32 size_y = 9;
124 125

  // if not set, use stride
D
dangqingqing 已提交
126
  optional uint32 stride_y = 10;
127 128

  // if not set, use output_x
D
dangqingqing 已提交
129
  optional uint32 output_y = 11;
130 131

  // if not set, use img_size
D
dangqingqing 已提交
132
  optional uint32 img_size_y = 12;
133 134

  // if not set, use padding
D
dangqingqing 已提交
135
  optional uint32 padding_y = 13;
136 137 138 139 140 141

  optional uint32 size_z = 14 [ default = 1 ];
  optional uint32 stride_z = 15 [ default = 1 ];
  optional uint32 output_z = 16 [ default = 1 ];
  optional uint32 img_size_z = 17 [ default = 1 ];
  optional uint32 padding_z = 18 [ default = 1 ];
142 143
}

144
message SppConfig {
145 146 147
  required ImageConfig image_conf = 1;
  required string pool_type = 2;
  required uint32 pyramid_height = 3;
148 149
}

150 151 152 153 154 155 156 157 158 159 160 161 162
message NormConfig {
  // rnorm or cmrnorm
  required string norm_type = 1;
  required uint32 channels = 2;

  // rnorm: this defines the size of the local regions
  // used for response normalization.
  // cmrnorm: The size parameter indicates how many
  // nearby maps to use for normalization.
  required uint32 size = 3;

  // the parameters for normalization
  // u = u / (1+scale*sum(u^2 in window))^pow
163 164
  required double scale = 4;
  required double pow = 5;
165 166 167 168 169 170 171 172 173 174 175 176

  // The size of output feature map.
  required uint32 output_x = 6;

  // The size of input feature map.
  required uint32 img_size = 7;

  // normalize with fixed window or sliding window
  // u = u / (1+scale*sum(u^2 in window))^pow
  // fixed window: shared a fixed window for each value
  // sliding window: have a different window for each value
  optional bool blocked = 8;
177 178

  // if not set, use output_x
179
  optional uint32 output_y = 9;
180 181

  // if not set, use img_size
182
  optional uint32 img_size_y = 10;
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
}

message BlockExpandConfig {
  required uint32 channels = 1;

  required uint32 stride_x = 2;
  required uint32 stride_y = 3;

  required uint32 padding_x = 4;
  required uint32 padding_y = 5;

  required uint32 block_x = 6;
  required uint32 block_y = 7;

  // The size of output feature map.
  required uint32 output_x = 8;
  required uint32 output_y = 9;

  // The size of input feature map.
  required uint32 img_size_x = 10;
  required uint32 img_size_y = 11;
}

206
message MaxOutConfig {
207
  required ImageConfig image_conf = 1;
208 209 210
  required uint32 groups = 2;
}

211
message RowConvConfig { required uint32 context_length = 1; }
212

H
hedaoyuan 已提交
213 214 215 216 217
message SliceConfig {
  required uint32 start = 1;
  required uint32 end = 2;
}

218 219 220 221 222 223 224 225 226
message ProjectionConfig {
  required string type = 1;
  required string name = 2;
  required uint64 input_size = 3;
  required uint64 output_size = 4;

  // For ShiftProjection
  optional int32 context_start = 5;
  optional int32 context_length = 6;
227
  optional bool trainable_padding = 7 [ default = false ];
228 229 230 231 232 233

  // For convolution
  optional ConvConfig conv_conf = 8;
  optional int32 num_filters = 9;

  // For IdentityOffsetProjection
234
  optional uint64 offset = 11 [ default = 0 ];
Q
qijun 已提交
235 236 237

  // For pool
  optional PoolConfig pool_conf = 12;
H
hedaoyuan 已提交
238 239

  // For slice
240 241
  // Each slice output is the input[start, end)
  repeated SliceConfig slices = 13;
242 243 244 245 246 247 248 249 250
}

message OperatorConfig {
  required string type = 1;
  repeated int32 input_indices = 2;
  repeated uint64 input_sizes = 3;
  required uint64 output_size = 4;

  // For DotMulOperator
251
  optional double dotmul_scale = 5 [ default = 1.0 ];
252 253 254 255 256 257

  // For ConvOperator
  optional ConvConfig conv_conf = 6;
  optional int32 num_filters = 7;
}

258
message BilinearInterpConfig {
L
liaogang 已提交
259
  // The size of input feature map.
260
  required ImageConfig image_conf = 1;
L
liaogang 已提交
261
  // The size of output feature map.
262 263
  required uint32 out_size_x = 2;
  required uint32 out_size_y = 3;
264
}
265 266 267 268 269 270 271 272

message ImageConfig {
  // The image data dimensionality.
  // This value must be either 1, 2, 3, or a multiple of 4.
  required uint32 channels = 2;

  // The size of input feature map.
  required uint32 img_size = 8;
273
  optional uint32 img_size_y = 9;
274
  optional uint32 img_size_z = 10 [ default = 1 ];
275 276
}

Y
yuan 已提交
277 278 279 280 281 282 283
message PriorBoxConfig {
  repeated uint32 min_size = 1;
  repeated uint32 max_size = 2;
  repeated float aspect_ratio = 3;
  repeated float variance = 4;
}

D
dangqingqing 已提交
284 285 286 287 288 289 290
message PadConfig {
  required ImageConfig image_conf = 1;
  repeated uint32 pad_c = 2;
  repeated uint32 pad_h = 3;
  repeated uint32 pad_w = 4;
}

291 292 293 294 295 296 297
message MultiBoxLossConfig {
  required uint32 num_classes = 1;
  required float overlap_threshold = 2;
  required float neg_pos_ratio = 3;
  required float neg_overlap = 4;
  required uint32 background_id = 5;
  required uint32 input_num = 6;
298 299
  optional uint32 height = 7 [ default = 1 ];
  optional uint32 width = 8 [ default = 1 ];
300 301 302 303 304 305 306 307 308 309
}

message DetectionOutputConfig {
  required uint32 num_classes = 1;
  required float nms_threshold = 2;
  required uint32 nms_top_k = 3;
  required uint32 background_id = 4;
  required uint32 input_num = 5;
  required uint32 keep_top_k = 6;
  required float confidence_threshold = 7;
310 311
  optional uint32 height = 8 [ default = 1 ];
  optional uint32 width = 9 [ default = 1 ];
312 313
}

G
guosheng 已提交
314
message ClipConfig {
315 316
  required double min = 1;
  required double max = 2;
G
guosheng 已提交
317 318
}

319 320 321 322 323 324 325 326 327 328 329 330
message LayerInputConfig {
  required string input_layer_name = 1;
  optional string input_parameter_name = 2;
  optional ConvConfig conv_conf = 3;
  optional PoolConfig pool_conf = 4;
  optional NormConfig norm_conf = 5;
  optional ProjectionConfig proj_conf = 6;
  optional BlockExpandConfig block_expand_conf = 7;
  optional ImageConfig image_conf = 8;
  // If the input layer has multi-output.
  // Set the argument name.
  optional string input_layer_argument = 9;
331
  optional BilinearInterpConfig bilinear_interp_conf = 10;
332
  optional MaxOutConfig maxout_conf = 11;
Q
qijun 已提交
333
  optional SppConfig spp_conf = 12;
Y
yuan 已提交
334
  optional PriorBoxConfig priorbox_conf = 13;
D
dangqingqing 已提交
335
  optional PadConfig pad_conf = 14;
336
  optional RowConvConfig row_conv_conf = 15;
337 338
  optional MultiBoxLossConfig multibox_loss_conf = 16;
  optional DetectionOutputConfig detection_output_conf = 17;
G
guosheng 已提交
339
  optional ClipConfig clip_conf = 18;
340 341 342
}

message LayerConfig {
343

344 345 346
  required string name = 1;
  required string type = 2;
  optional uint64 size = 3;
347
  // optional ActivationConfig activation = 4;
348 349 350 351 352 353 354 355 356 357 358 359
  optional string active_type = 4;
  repeated LayerInputConfig inputs = 5;
  optional string bias_parameter_name = 6;

  // This number must be a multiple of 16.
  optional uint32 num_filters = 7;

  // indicates that the biases of every filter in this layer
  // should be shared amongst all applications of that filter
  // (which is how convnets are usually trained). Setting this to
  // false will untie the biases, yielding a separate bias for
  // every location at which the filter is applied.
360
  optional bool shared_biases = 8 [ default = false ];
361 362 363 364 365 366 367 368 369

  // Valid values are ones that divide the area of the output
  // grid in this convolutional layer. For example if this layer
  // produces 32-channel 20x20 output grid, valid values of
  // partialSum are ones which divide 20*20 = 400.
  // I'll update this comments when confirmed
  optional uint32 partial_sum = 9;

  // for dropout
370
  optional double drop_rate = 10;
371 372 373 374 375 376 377

  // for HierarchicalSoftmaxLayer and NCELayer
  // the number of classes
  optional uint32 num_classes = 11;

  // the gpu device which the Layer's data in.
  // Only used by ParallelNeuralNetork. Ignored otherwise.
378
  optional int32 device = 12 [ default = -1 ];
379

380 381 382
  // for recurrent layer. If true, the recurrence runs from the end to the
  // beginning.
  optional bool reversed = 13 [ default = false ];
383

384 385 386
  // for lstmemory layer. Different types of nodes have different activation
  // type.
  optional string active_gate_type = 14;
387 388 389 390
  optional string active_state_type = 15;

  // For NCELayer
  // The number of random negative labels for each sample
391
  optional int32 num_neg_samples = 16 [ default = 10 ];
392 393 394 395

  // For NCELayer
  // The distribution for generating the random negative labels.
  // A uniform distribution will be used if not provided
396
  repeated double neg_sampling_dist = 17 [ packed = true ];
397 398 399

  // For MaxLayer
  // default: output VALUE of MaxLayer. set this flag to true for output INDEX
400
  // INDEX will be put in Argument::value as double values.
401
  optional bool output_max_index = 19 [ default = false ];
402 403 404 405

  /// The filed number 20 have been deprecated.

  // For self-normalized estimation
406
  optional double softmax_selfnorm_alpha = 21 [ default = 0.1 ];
407 408 409 410 411 412 413 414 415 416

  /// The filed numbers 22 and 23 have been deprecated.

  // for MDLstmLayer
  repeated bool directions = 24;

  // for CTCLayer
  optional bool norm_by_times = 25;

  // for CostLayers
417
  optional double coeff = 26 [ default = 1.0 ];
418 419 420 421 422 423

  // for AverageLayer
  // can be set to: 'average', 'sum' or 'squarerootn'
  optional string average_strategy = 27;

  // for error clipping
424
  optional double error_clipping_threshold = 28 [ default = 0.0 ];
425 426 427 428 429 430 431 432 433

  // for operators used by mixed layer
  repeated OperatorConfig operator_confs = 29;

  // for lambdaCost
  optional int32 NDCG_num = 30;
  optional int32 max_sort_size = 31;

  // for SlopeInterceptLayer
434 435
  optional double slope = 32;
  optional double intercept = 33;
436 437

  // for CosSimVecMatLayer and CosSimLayer
438
  optional double cos_scale = 34;
439 440 441 442 443 444 445 446 447 448 449 450 451

  // for DataNormLayer
  // can be set to: 'z-score', 'min-max' or 'decimal-scaling'
  optional string data_norm_strategy = 36;

  // for bos/eos id
  optional uint32 bos_id = 37;
  optional uint32 eos_id = 38;

  // for max id layer
  optional uint32 beam_size = 39;

  // for seqlastins layer, whether select first instead last
452
  optional bool select_first = 40 [ default = false ];
453 454 455

  // for seqlastins layer, AverageLayer, MaxLayer and ExpandLayer
  // can be set to: 'non-seq','seq'
456
  optional string trans_type = 41 [ default = 'non-seq' ];
457 458 459

  // to indicate whether selective_fc layer
  // is used in sequence generation or not
460
  optional bool selective_fc_pass_generation = 42 [ default = false ];
461 462 463 464 465 466

  // to indicate whether selective_fc layer take its last input to
  // selected several columns and only compute the multiplications
  // between the input matrices and the selected columns of
  // the parameter matrices of this layer.
  // if set false, selective_fc degrades into fc.
467
  optional bool has_selected_colums = 43 [ default = true ];
468 469 470 471 472

  // this parameter is for speed consideration.
  // if number of the selected columns is less than
  // sample number * selective_fc output size * selective_fc_mull_mull_ratio
  // sparse multiplication is used, otherwise, using full multiplication.
473
  optional double selective_fc_full_mul_ratio = 44 [ default = 0.02 ];
474 475 476 477

  // to indicate how many threads selective_fc use to to accelate
  // the plain_mul period
  // leave empty or set to 0 to disable multi-thread accleleration
478 479
  optional uint32 selective_fc_parallel_plain_mul_thread_num = 45
      [ default = 0 ];
480 481 482 483 484 485

  // for batch normalization layer
  // if set use_global_stats true, will use the loaded mean and variance.
  optional bool use_global_stats = 46;

  // use to compute moving mean and variance.
486
  optional double moving_average_fraction = 47 [ default = 0.9 ];
487 488

  // bias size
489
  optional uint32 bias_size = 48 [ default = 0 ];
490

491
  // this parameter can be used as a user-defined parameter when necessary,
492
  // without changing the proto file.
493
  // e.g., when a new layer with a user-defined parameter is implemented,
494 495
  // it can be used to pass that parameter, without modifying the proto file.
  // string type is used for flexibility: different types can be converted
496
  // to string and reinterpreted in the user's own layer implementation.
497
  optional string user_arg = 49;
498

499 500 501
  // to indicate rectangle image data
  optional uint64 height = 50;
  optional uint64 width = 51;
502

503
  // blank label used in ctc loss
504
  optional uint32 blank = 52 [ default = 0 ];
505

506
  // stride parameter for seqlastins layer, AverageLayer, MaxLayer, which
507 508
  // controls the scope of pooling operation. can be set > 0.
  // leave empty or set to -1 to disable this stride pooling.
509
  optional int32 seq_pool_stride = 53 [ default = -1 ];
510 511

  // for crop layer
512
  optional int32 axis = 54 [ default = 2 ];
513 514
  repeated uint32 offset = 55;
  repeated uint32 shape = 56;
L
Luo Tao 已提交
515 516 517

  // for HuberRegressionLoss
  optional double delta = 57 [ default = 1.0 ];
C
chengduoZH 已提交
518 519
  // for 3D data
  optional double depth = 58 [ default = 1 ];
520 521 522 523 524 525 526 527
}

message EvaluatorConfig {
  required string name = 1;
  required string type = 2;
  repeated string input_layers = 3;

  // Used by ChunkEvaluator
528 529 530 531
  // one of "IOB", "IOE", "IOBES"
  optional string chunk_scheme = 4;
  // number of chunk types other than "other"
  optional int32 num_chunk_types = 5;
532 533 534

  // Used by PrecisionRecallEvaluator and ClassificationErrorEvaluator
  // For multi binary labels: true if output > classification_threshold
535
  optional double classification_threshold = 6 [ default = 0.5 ];
536
  // The positive label. -1 means average precision and recall
537
  optional int32 positive_label = 7 [ default = -1 ];
538 539 540 541 542 543 544 545

  // load dict from this file
  optional string dict_file = 8;

  // dump result in this file
  optional string result_file = 9;

  // top # results for max id printer
546
  optional int32 num_results = 10 [ default = 1 ];
547 548

  // whether to delimit the sequence in the seq_text_printer
549
  optional bool delimited = 11 [ default = true ];
550

P
Peng Li 已提交
551 552 553
  // Used by ChunkEvaluator
  // chunk of these types are not counted
  repeated int32 excluded_chunk_types = 12;
554 555 556

  // Used by ClassificationErrorEvaluator
  // top # classification error
557
  optional int32 top_k = 13 [ default = 1 ];
Y
yangyaming 已提交
558 559

  // Used by DetectionMAPEvaluator
560
  optional double overlap_threshold = 14 [ default = 0.5 ];
Y
yangyaming 已提交
561

562
  optional int32 background_id = 15 [ default = 0 ];
Y
yangyaming 已提交
563

564
  optional bool evaluate_difficult = 16 [ default = false ];
Y
yangyaming 已提交
565

566
  optional string ap_type = 17 [ default = "11point" ];
567 568 569 570 571 572
}

message LinkConfig {
  required string layer_name = 1;
  required string link_name = 2;
  // If true, this link has sub-sequence
573
  optional bool has_subseq = 3 [ default = false ];
574 575 576 577 578 579 580 581 582 583 584 585
}

message MemoryConfig {
  required string layer_name = 1;
  required string link_name = 2;

  optional string boot_layer_name = 3;
  optional string boot_bias_parameter_name = 4;
  optional string boot_bias_active_type = 5;
  optional uint32 boot_with_const_id = 7;

  // memory is a sequence, initailized by a sequence boot layer
586
  optional bool is_sequence = 6 [ default = false ];
587 588 589 590 591
}

message GeneratorConfig {
  required uint32 max_num_frames = 1;
  required string eos_layer_name = 2;
592
  optional int32 num_results_per_sample = 3 [ default = 1 ];
593 594

  // for beam search
595
  optional int32 beam_size = 4 [ default = 1 ];
596

597
  optional bool log_prob = 5 [ default = true ];
598 599 600 601 602 603 604 605 606
}

message SubModelConfig {
  required string name = 1;
  repeated string layer_names = 2; // selected layers in sub model
  repeated string input_layer_names = 3;
  repeated string output_layer_names = 4;
  repeated string evaluator_names = 5;

607
  optional bool is_recurrent_layer_group = 6 [ default = false ];
608 609

  // If true, the recurrence runs from the end to the beginning.
610
  optional bool reversed = 7 [ default = false ];
611 612 613 614 615 616 617 618 619 620 621 622

  // name and link name of memory
  repeated MemoryConfig memories = 8;

  // if use recurrent layer group, all layers in submodel will postfix by
  // "_in_"+submodel.name, so we add a name pair to link between
  // root model and layer group,
  // note that these in/out layers are not input/output of the network.
  repeated LinkConfig in_links = 9;
  repeated LinkConfig out_links = 10;

  optional GeneratorConfig generator = 11;
623

624 625
  // the id of inlink which share info with outlinks, used in recurrent layer
  // group
626
  optional int32 target_inlinkid = 12;
627 628 629 630 631
}

message ModelConfig {
  // type of the model.
  // Currently, "nn", "recurrent_nn" and "recursive_nn" are supported
632
  required string type = 1 [ default = "nn" ];
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

  // layers should be ordered in such a way that the forward propagation
  // can be correctly executed by going from the first layer to the last layer
  repeated LayerConfig layers = 2;

  repeated ParameterConfig parameters = 3;

  // Input layers should have the same order as the data streams provided
  // by the data provider. The type of input layers should be "data"
  repeated string input_layer_names = 4;

  // For training, the type of a output layer is usually cost layer.
  // For prediction, they should be the actual output layers.
  repeated string output_layer_names = 5;

  repeated EvaluatorConfig evaluators = 6;

  repeated SubModelConfig sub_models = 8;

  // For External Machine, defining how to split a neural network
  // into multiple parts.
  optional ExternalConfig external_config = 9;
};
新手
引导
客服 返回
顶部