uci_housing.py 4.3 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14 15 16
"""
UCI Housing dataset.

G
gongweibao 已提交
17
This module will download dataset from
Q
qijun 已提交
18
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and
Q
qijun 已提交
19
parse training set and test set into paddle reader creators.
Y
Yu Yang 已提交
20
"""
D
dangqingqing 已提交
21

T
tangwei12 已提交
22 23
import os

D
dangqingqing 已提交
24
import numpy as np
T
tangwei12 已提交
25 26
import tempfile
import tarfile
D
dangqingqing 已提交
27
import os
28
import paddle.dataset.common
D
dangqingqing 已提交
29 30 31 32 33 34 35

__all__ = ['train', 'test']

URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data'
MD5 = 'd4accdce7a25600298819f8e28e8d593'
feature_names = [
    'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX',
Y
Your Name 已提交
36
    'PTRATIO', 'B', 'LSTAT', 'convert'
D
dangqingqing 已提交
37 38 39 40
]

UCI_TRAIN_DATA = None
UCI_TEST_DATA = None
T
tangwei12 已提交
41 42 43

FLUID_URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fluid/fit_a_line.fluid.tar'
FLUID_MD5_MODEL = '6e6dd637ccd5993961f68bfbde46090b'
D
dangqingqing 已提交
44

45

D
dangqingqing 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def feature_range(maximums, minimums):
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    feature_num = len(maximums)
    ax.bar(range(feature_num), maximums - minimums, color='r', align='center')
    ax.set_title('feature scale')
    plt.xticks(range(feature_num), feature_names)
    plt.xlim([-1, feature_num])
    fig.set_figheight(6)
    fig.set_figwidth(10)
    if not os.path.exists('./image'):
        os.makedirs('./image')
    fig.savefig('image/ranges.png', dpi=48)
    plt.close(fig)


def load_data(filename, feature_num=14, ratio=0.8):
    global UCI_TRAIN_DATA, UCI_TEST_DATA
    if UCI_TRAIN_DATA is not None and UCI_TEST_DATA is not None:
        return

    data = np.fromfile(filename, sep=' ')
    data = data.reshape(data.shape[0] / feature_num, feature_num)
    maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum(
        axis=0) / data.shape[0]
    feature_range(maximums[:-1], minimums[:-1])
    for i in xrange(feature_num - 1):
        data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])
    offset = int(data.shape[0] * ratio)
    UCI_TRAIN_DATA = data[:offset]
    UCI_TEST_DATA = data[offset:]


def train():
Q
qijun 已提交
82
    """
Q
qijun 已提交
83
    UCI_HOUSING training set creator.
Q
qijun 已提交
84

Q
qijun 已提交
85 86
    It returns a reader creator, each sample in the reader is features after
    normalization and price number.
Q
qijun 已提交
87

Q
qijun 已提交
88
    :return: Training reader creator
Q
qijun 已提交
89 90
    :rtype: callable
    """
D
dangqingqing 已提交
91
    global UCI_TRAIN_DATA
92
    load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5))
D
dangqingqing 已提交
93 94 95 96 97 98 99 100 101

    def reader():
        for d in UCI_TRAIN_DATA:
            yield d[:-1], d[-1:]

    return reader


def test():
Q
qijun 已提交
102 103 104
    """
    UCI_HOUSING test set creator.

Q
qijun 已提交
105 106
    It returns a reader creator, each sample in the reader is features after
    normalization and price number.
Q
qijun 已提交
107 108 109 110

    :return: Test reader creator
    :rtype: callable
    """
D
dangqingqing 已提交
111
    global UCI_TEST_DATA
112
    load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5))
D
dangqingqing 已提交
113 114 115 116 117 118

    def reader():
        for d in UCI_TEST_DATA:
            yield d[:-1], d[-1:]

    return reader
Y
Yancey1989 已提交
119

T
tangwei12 已提交
120

T
tangwei12 已提交
121
def fluid_model():
T
tangwei12 已提交
122 123
    parameter_tar = paddle.dataset.common.download(
        FLUID_URL_MODEL, 'uci_housing', FLUID_MD5_MODEL, 'fit_a_line.fluid.tar')
T
tangwei12 已提交
124 125 126 127 128 129 130

    tar = tarfile.TarFile(parameter_tar, mode='r')
    dirpath = tempfile.mkdtemp()
    tar.extractall(path=dirpath)

    return dirpath

T
tangwei12 已提交
131

T
tangwei12 已提交
132 133
def predict_reader():
    """
134
    It returns just one tuple data to do inference.
T
tangwei12 已提交
135

136 137
    :return: one tuple data
    :rtype: tuple 
T
tangwei12 已提交
138 139 140
    """
    global UCI_TEST_DATA
    load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5))
T
tangwei12 已提交
141
    return (UCI_TEST_DATA[0][:-1], )
Y
Yancey1989 已提交
142

T
tangwei12 已提交
143

144
def fetch():
145
    paddle.dataset.common.download(URL, 'uci_housing', MD5)
R
root 已提交
146

T
tangwei12 已提交
147

R
root 已提交
148 149 150 151
def convert(path):
    """
    Converts dataset to recordio format
    """
152 153
    paddle.dataset.common.convert(path, train(), 1000, "uci_housing_train")
    paddle.dataset.common.convert(path, test(), 1000, "uci_houseing_test")