fluid.html 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: PaddlePaddle Fluid &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
85
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a></li>
86
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a></li>
88
<li class="toctree-l1"><a class="reference internal" href="../faq/index_en.html">FAQ</a></li>
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
111
<li class="toctree-l2"><a class="reference internal" href="../getstarted/quickstart_en.html">Quick Start</a></li>
112
<li class="toctree-l2"><a class="reference internal" href="../getstarted/concepts/use_concepts_en.html">Basic Concept</a></li>
113 114
</ul>
</li>
115
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_en.html">Install and Build</a><ul>
116
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/pip_install_en.html">Install using pip</a></li>
117 118
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../build_and_install/build_from_source_en.html">Build from Sources</a></li>
119 120 121
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
122 123 124 125
<li class="toctree-l2"><a class="reference internal" href="../howto/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
126 127
</ul>
</li>
128 129 130 131
<li class="toctree-l2"><a class="reference internal" href="../howto/cluster/index_en.html">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/preparations_en.html">Preparations</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/cmd_argument_en.html">Command-line arguments</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/cluster/multi_cluster/index_en.html">Use different clusters</a><ul>
132 133 134 135
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/fabric_en.html">Fabric</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/openmpi_en.html">OpenMPI</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_en.html">Kubernetes</a></li>
<li class="toctree-l4"><a class="reference internal" href="../howto/cluster/multi_cluster/k8s_aws_en.html">Kubernetes on AWS</a></li>
136 137
</ul>
</li>
138 139 140 141
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/rnn_config_en.html">RNN Configuration</a></li>
142 143 144
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/recurrent_group_en.html">Recurrent Group Tutorial</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hierarchical_layer_en.html">Layers supporting hierarchical sequence as input</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/rnn/hrnn_rnn_api_compare_en.html">API comparision between RNN and hierarchical RNN</a></li>
145 146 147 148 149
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
150 151 152 153 154
<li class="toctree-l1"><a class="reference internal" href="../dev/index_en.html">Development</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../dev/write_docs_en.html">Contribute Documentation</a></li>
</ul>
</li>
155 156 157 158 159 160 161 162
<li class="toctree-l1"><a class="reference internal" href="../faq/index_en.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../faq/build_and_install/index_en.html">Install, Build and Unit test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/model/index_en.html">Model Configuration</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/parameter/index_en.html">Parameter Setting</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/local/index_en.html">Local Training and Prediction</a></li>
<li class="toctree-l2"><a class="reference internal" href="../faq/cluster/index_en.html">Cluster Training and Prediction</a></li>
</ul>
</li>
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: PaddlePaddle Fluid</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-paddlepaddle-fluid">
<span id="design-doc-paddlepaddle-fluid"></span><h1>Design Doc: PaddlePaddle Fluid<a class="headerlink" href="#design-doc-paddlepaddle-fluid" title="Permalink to this headline"></a></h1>
<div class="section" id="why-fluid">
<span id="why-fluid"></span><h2>Why Fluid<a class="headerlink" href="#why-fluid" title="Permalink to this headline"></a></h2>
196 197
<p>When Baidu developed PaddlePaddle in 2013, the only well-known open source deep learning system at the time was Caffe.  However, when PaddlePaddle was open-sourced in 2016, many other choices were available. There was a challenge &#8211; what is the need for open sourcing yet another deep learning framework?</p>
<p>Fluid is the answer.  Fluid is similar to PyTorch and TensorFlow Eager Execution, which describes the &#8220;process&#8221; of training or inference using the concept of a model.  In fact in PyTorch, TensorFlow Eager Execution and Fluid, there is no  concept of a model at all. The details are covered in the sections below. Fluid is currently more extreme in the above mentioned idea than PyTorch and Eager Execution, and we are trying to push Fluid towards the directions of a compiler and a new programming language for deep learning.</p>
198 199 200
</div>
<div class="section" id="the-evolution-of-deep-learning-systems">
<span id="the-evolution-of-deep-learning-systems"></span><h2>The Evolution of Deep Learning Systems<a class="headerlink" href="#the-evolution-of-deep-learning-systems" title="Permalink to this headline"></a></h2>
201 202
<p>Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented.</p>
<p>| Existed since | model as sequence of layers | model as graph of operators | No model |
203 204 205 206
|&#8211;|&#8211;|&#8211;|&#8211;|
| 2013 | Caffe, Theano, Torch, PaddlePaddle | | |
| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | |
| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid |</p>
207
<p>From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model.  To understand the reasons behind this direction, a comparison of the <em>programming paradigms</em> or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these.</p>
208 209 210
</div>
<div class="section" id="deep-learning-programming-paradigms">
<span id="deep-learning-programming-paradigms"></span><h2>Deep Learning Programming Paradigms<a class="headerlink" href="#deep-learning-programming-paradigms" title="Permalink to this headline"></a></h2>
211
<p>With the systems listed as the first or second generation, e.g., Caffe or TensorFlow, an AI application training program looks like the following:</p>
212 213 214 215 216 217 218 219 220 221
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;image&quot;</span><span class="p">)</span>
<span class="n">l</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="s2">&quot;label&quot;</span><span class="p">)</span>
<span class="n">f</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">W</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">mse</span><span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="n">s</span><span class="p">)</span>

<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span> <span class="c1"># train for 1000 iterations</span>
    <span class="n">m</span> <span class="o">=</span> <span class="n">read_minibatch</span><span class="p">()</span>
    <span class="n">forward</span><span class="p">({</span><span class="nb">input</span><span class="o">=</span><span class="n">x</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">m</span><span class="p">},</span> <span class="n">minimize</span><span class="o">=</span><span class="n">c</span><span class="p">)</span>
    <span class="n">backward</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
222

223 224 225 226 227
<span class="k">print</span> <span class="n">W</span> <span class="c1"># print the trained model parameters.</span>
</pre></div>
</div>
<p>The above program includes two parts:</p>
<ol class="simple">
228 229
<li>The first part describes the model, and</li>
<li>The second part describes the training process (or inference process) for the model.</li>
230
</ol>
231 232
<p>This paradigm has a well-known problem that limits the productivity of programmers. If the programmer made a mistake in configuring the model, the error messages wouldn&#8217;t show up until the second part is executed and <code class="docutils literal"><span class="pre">forward</span></code> and <code class="docutils literal"><span class="pre">backward</span></code> propagations are performed. This makes it difficult for the programmer to debug and locate a mistake that is located blocks away from the actual error prompt.</p>
<p>This problem of being hard to debug and re-iterate fast on a program is the primary reason that programmers, in general,  prefer PyTorch over the older systems.  Using PyTorch, we would write the above program as following:</p>
233 234 235 236 237 238 239 240 241 242
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">W</span> <span class="o">=</span> <span class="n">tensor</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>

<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span> <span class="c1"># train for 1000 iterations</span>
    <span class="n">m</span> <span class="o">=</span> <span class="n">read_minibatch</span><span class="p">()</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">m</span><span class="p">[</span><span class="s2">&quot;image&quot;</span><span class="p">]</span>
    <span class="n">l</span> <span class="o">=</span> <span class="n">m</span><span class="p">[</span><span class="s2">&quot;label&quot;</span><span class="p">]</span>
    <span class="n">f</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">W</span><span class="p">)</span>
    <span class="n">s</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
    <span class="n">c</span> <span class="o">=</span> <span class="n">layer</span><span class="o">.</span><span class="n">mse</span><span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="n">s</span><span class="p">)</span>
    <span class="n">backward</span><span class="p">()</span>
243

244 245 246
<span class="k">print</span> <span class="n">W</span> <span class="c1"># print the trained model parameters.</span>
</pre></div>
</div>
247
<p>We can see that the main difference is the moving the model configuration part (the first step) into the training loop.  This change would allow the mistakes in model configuration to be reported where they actually appear in the programming block.  This change also represents the model better, or its forward pass, by keeping the configuration process in the training loop.</p>
248 249 250
</div>
<div class="section" id="describe-arbitrary-models-for-the-future">
<span id="describe-arbitrary-models-for-the-future"></span><h2>Describe Arbitrary Models for the Future<a class="headerlink" href="#describe-arbitrary-models-for-the-future" title="Permalink to this headline"></a></h2>
251 252
<p>Describing the process instead of the model also brings Fluid, the flexibility to define different non-standard models that haven&#8217;t been invented yet.</p>
<p>As we write out the program for the process, we can write an RNN as a loop, instead of an RNN as a layer or as an operator.  A PyTorch example would look like the following:</p>
253 254 255 256 257 258 259
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">xrange</span><span class="p">(</span><span class="mi">1000</span><span class="p">):</span>
    <span class="n">m</span> <span class="o">=</span> <span class="n">read_minibatch</span><span class="p">()</span>
    <span class="n">x</span> <span class="o">=</span> <span class="n">m</span><span class="p">[</span><span class="s2">&quot;sentence&quot;</span><span class="p">]</span>
    <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">xrange</span> <span class="n">x</span><span class="o">.</span><span class="n">len</span><span class="p">():</span>
        <span class="n">h</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">the_step</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">t</span><span class="p">])</span>
</pre></div>
</div>
260
<p>With Fluid, the training loop and the RNN in the above program are not really Python loops, but just a &#8220;loop structure&#8221; provided by Fluid and implemented in C++ as the following:</p>
261 262 263 264 265 266 267 268 269
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">train_loop</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">While</span><span class="p">(</span><span class="n">cond</span><span class="p">)</span>
<span class="k">with</span> <span class="n">train_loop</span><span class="o">.</span><span class="n">block</span><span class="p">():</span>
  <span class="n">m</span> <span class="o">=</span> <span class="n">read_minibatch</span><span class="p">()</span>
  <span class="n">x</span> <span class="o">=</span> <span class="n">m</span><span class="p">[</span><span class="s2">&quot;sentence&quot;</span><span class="p">]</span>
  <span class="n">rnn</span> <span class="o">=</span> <span class="n">layers</span><span class="o">.</span><span class="n">While</span><span class="p">(</span><span class="o">...</span><span class="p">)</span>
  <span class="k">with</span> <span class="n">rnn</span><span class="o">.</span><span class="n">block</span><span class="p">():</span>
    <span class="n">h</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">the_step</span><span class="p">(</span><span class="nb">input</span><span class="p">[</span><span class="n">t</span><span class="p">])</span>
</pre></div>
</div>
270
<p>An actual Fluid example is described  <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/bde090a97564b9c61a6aaa38b72ccc4889d102d9/python/paddle/fluid/tests/unittests/test_while_op.py#L50-L58">here</a>.</p>
271
<p>From the example, the Fluid programs look very similar to their PyTorch equivalent programs, except that Fluid&#8217;s loop structure, wrapped with Python&#8217;s <code class="docutils literal"><span class="pre">with</span></code> statement, could run much faster than just a Python loop.</p>
272 273 274 275
<p>We have more examples of the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/if_else_op.md"><code class="docutils literal"><span class="pre">if-then-else</span></code></a> structure of Fluid.</p>
</div>
<div class="section" id="turing-completeness">
<span id="turing-completeness"></span><h2>Turing Completeness<a class="headerlink" href="#turing-completeness" title="Permalink to this headline"></a></h2>
276
<p>In computability theory, a system of data-manipulation rules, such as a programming language, is said to be Turing complete if it can be used to simulate any Turing machine.  For a programming language, if it provides if-then-else and loop, it is Turing complete.  From the above examples, Fluid seems to be Turing complete; however, it is noteworthy to notice that there  is a slight difference between the <code class="docutils literal"><span class="pre">if-then-else</span></code> of Fluid and that of a programming language. The difference being that the former runs both of its branches and splits the input mini-batch into two &#8211; one for the True condition and another for the False condition. This hasn&#8217;t been researched in depth if this is equivalent to the <code class="docutils literal"><span class="pre">if-then-else</span></code> in programming languages that makes them Turing-complete.  Based on a conversation with <a class="reference external" href="https://research.google.com/pubs/104812.html">Yuang Yu</a>, it seems to be the case but this needs to be looked into in-depth.</p>
277 278 279
</div>
<div class="section" id="the-execution-of-a-fluid-program">
<span id="the-execution-of-a-fluid-program"></span><h2>The Execution of a Fluid Program<a class="headerlink" href="#the-execution-of-a-fluid-program" title="Permalink to this headline"></a></h2>
280 281
<p>There are two ways to execute a Fluid program.  When a program is executed, it creates a protobuf message <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145"><code class="docutils literal"><span class="pre">ProgramDesc</span></code></a> that describes the process and is conceptually like an <a class="reference external" href="https://en.wikipedia.org/wiki/Abstract_syntax_tree">abstract syntax tree</a>.</p>
<p>There is a C++ class <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h"><code class="docutils literal"><span class="pre">Executor</span></code></a>, which runs a <code class="docutils literal"><span class="pre">ProgramDesc</span></code>, similar to how an interpreter runs a Python program.</p>
282
<p>Fluid is moving towards the direction of a compiler, which is explain in <a class="reference internal" href="fluid_compiler.html"><span class="doc">fluid</span></a>.</p>
283
</div>
284 285 286 287
<div class="section" id="backward-compatibility-of-fluid">
<span id="backward-compatibility-of-fluid"></span><h2>Backward Compatibility of Fluid<a class="headerlink" href="#backward-compatibility-of-fluid" title="Permalink to this headline"></a></h2>
<p>Given all the advantages from the removal of the concept of a <em>model</em>, hardware manufacturers might still prefer the existence of the concept of a model, so it would be easier for them to support multiple frameworks all at once and could run a trained model during inference.  For example, Nervana, a startup company acquired by Intel, has been working on an XPU that reads the models in the format known as <a class="reference external" href="https://github.com/NervanaSystems/ngraph">n-graph</a>.  Similarly, <a class="reference external" href="https://www.movidius.com/">Movidius</a> is producing a mobile deep learning chip that reads and runs graphs of operators.  The well-known <a class="reference external" href="https://github.com/onnx/onnx">ONNX</a> is also a file format of graphs of operators.</p>
<p>For Fluid, we can write a converter that extracts the parts in the <code class="docutils literal"><span class="pre">ProgramDesc</span></code> protobuf message, converts them into a graph of operators, and exports the graph into the ONNX or n-graph format.</p>
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>