test_conv2d_layer.py 9.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest


23 24 25 26
def _reverse_repeat_list(t, n):
    return list(x for x in reversed(t) for _ in range(n))


27 28 29 30 31 32 33 34 35
class Conv2DTestCase(unittest.TestCase):
    def __init__(self,
                 methodName='runTest',
                 batch_size=4,
                 spartial_shape=(16, 16),
                 num_channels=6,
                 num_filters=8,
                 filter_size=3,
                 padding=0,
36
                 padding_mode='zeros',
37 38 39 40 41 42 43 44 45 46 47 48 49 50
                 stride=1,
                 dilation=1,
                 groups=1,
                 no_bias=False,
                 data_format="NCHW",
                 dtype="float32"):
        super(Conv2DTestCase, self).__init__(methodName)
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_filters = num_filters
        self.spartial_shape = spartial_shape
        self.filter_size = filter_size

        self.padding = padding
51 52 53 54 55 56
        if padding_mode in {'reflect', 'replicate', 'circular'}:
            _paired_padding = fluid.layers.utils.convert_to_list(padding, 2,
                                                                 'padding')
            self._reversed_padding_repeated_twice = _reverse_repeat_list(
                _paired_padding, 2)
        self.padding_mode = padding_mode
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        self.stride = stride
        self.dilation = dilation
        self.groups = groups
        self.no_bias = no_bias
        self.data_format = data_format
        self.dtype = dtype

    def setUp(self):
        self.channel_last = self.data_format == "NHWC"
        if self.channel_last:
            input_shape = (self.batch_size, ) + self.spartial_shape + (
                self.num_channels, )
        else:
            input_shape = (self.batch_size, self.num_channels
                           ) + self.spartial_shape
        self.input = np.random.randn(*input_shape).astype(self.dtype)

        if isinstance(self.filter_size, int):
            filter_size = [self.filter_size] * 2
        else:
            filter_size = self.filter_size
        self.weight_shape = weight_shape = (self.num_filters, self.num_channels
                                            // self.groups) + tuple(filter_size)
        self.weight = np.random.uniform(
            -1, 1, size=weight_shape).astype(self.dtype)
        if not self.no_bias:
            self.bias = np.random.uniform(
                -1, 1, size=(self.num_filters, )).astype(self.dtype)
        else:
            self.bias = None

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1,self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                weight_attr = I.NumpyArrayInitializer(self.weight)
                if self.bias is None:
                    bias_attr = False
                else:
                    bias_attr = I.NumpyArrayInitializer(self.bias)
101 102 103 104 105 106 107 108 109
                if self.padding_mode != 'zeros':
                    x_var = F.pad(x_var,
                                  self._reversed_padding_repeated_twice,
                                  mode=self.padding_mode,
                                  data_format=self.data_format)
                    padding = 0
                else:
                    padding = self.padding

110 111 112 113
                y_var = fluid.layers.conv2d(
                    x_var,
                    self.num_filters,
                    self.filter_size,
114
                    padding=padding,
115 116 117 118 119 120
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=weight_attr,
                    bias_attr=bias_attr,
                    data_format=self.data_format)
121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        feed_dict = {"input": self.input}
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def functional(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                input_shape = (-1, -1, -1,self.num_channels) \
                    if self.channel_last else (-1, self.num_channels, -1, -1)
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                w_var = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype)
                b_var = fluid.data(
                    "bias", (self.num_filters, ), dtype=self.dtype)
140 141 142 143 144 145 146 147 148 149

                if self.padding_mode != 'zeros':
                    x_var = F.pad(x_var,
                                  self._reversed_padding_repeated_twice,
                                  mode=self.padding_mode,
                                  data_format=self.data_format)
                    padding = 0
                else:
                    padding = self.padding

150 151 152 153
                y_var = F.conv2d(
                    x_var,
                    w_var,
                    b_var if not self.no_bias else None,
154
                    padding=padding,
155 156 157 158 159 160 161 162 163 164 165 166 167 168
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format)
        feed_dict = {"input": self.input, "weight": self.weight}
        if self.bias is not None:
            feed_dict["bias"] = self.bias
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
        return y_np

    def paddle_nn_layer(self):
        x_var = dg.to_variable(self.input)
169
        conv = nn.Conv2d(
170 171 172 173
            self.num_channels,
            self.num_filters,
            self.filter_size,
            padding=self.padding,
174
            padding_mode=self.padding_mode,
175 176 177
            stride=self.stride,
            dilation=self.dilation,
            groups=self.groups,
178
            data_format=self.data_format)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        conv.weight.set_value(self.weight)
        if not self.no_bias:
            conv.bias.set_value(self.bias)
        y_var = conv(x_var)
        y_np = y_var.numpy()
        return y_np

    def _test_equivalence(self, place):
        place = fluid.CPUPlace()
        result1 = self.fluid_layer(place)
        result2 = self.functional(place)
        with dg.guard(place):
            result3 = self.paddle_nn_layer()
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)

        if fluid.core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            self._test_equivalence(place)


class Conv2DErrorTestCase(Conv2DTestCase):
    def runTest(self):
        place = fluid.CPUPlace()
        with dg.guard(place):
            with self.assertRaises(ValueError):
                self.paddle_nn_layer()


def add_cases(suite):
    suite.addTest(Conv2DTestCase(methodName='runTest'))
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest', stride=[1, 2], dilation=2))
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest', stride=2, dilation=(2, 1)))
    suite.addTest(
        Conv2DTestCase(
222
            methodName='runTest', padding="same", no_bias=True))
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest', filter_size=(3, 3), padding='valid'))
    suite.addTest(Conv2DTestCase(methodName='runTest', padding=(2, 3)))
    suite.addTest(Conv2DTestCase(methodName='runTest', padding=[1, 2, 2, 1]))
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest', padding=[[0, 0], [0, 0], [1, 2], [2, 1]]))
    suite.addTest(Conv2DTestCase(methodName='runTest', data_format="NHWC"))
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest',
            data_format="NHWC",
            padding=[[0, 0], [1, 1], [2, 2], [0, 0]]))
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest', groups=2, padding="valid"))
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest',
            num_filters=6,
            num_channels=3,
            groups=3,
            padding="valid"))
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest',
            filter_size=(3, 3),
            padding=1,
            padding_mode='reflect'))
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest',
            filter_size=(3, 3),
            padding=1,
            padding_mode='replicate'))
    suite.addTest(
        Conv2DTestCase(
            methodName='runTest',
            filter_size=(3, 3),
            padding=1,
            padding_mode='circular'))
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281


def add_error_cases(suite):
    suite.addTest(
        Conv2DErrorTestCase(
            methodName='runTest', num_channels=5, groups=2))


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    add_cases(suite)
    add_error_cases(suite)
    return suite


if __name__ == '__main__':
    unittest.main()