bce_loss_op.h 3.0 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>  // for max
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class BCELossOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* out = ctx.Output<Tensor>("Out");

    auto x_data = x->data<T>();
    auto label_data = labels->data<T>();
    auto out_data = out->mutable_data<T>(ctx.GetPlace());
37
    auto x_numel = x->numel();
C
ceci3 已提交
38 39 40

    // out = -(label * ln(x) + (1 - label) * ln(1 - x)) = (label - 1) * ln(1 -
    // x) - label * ln(x)
41
    for (int64_t i = 0; i < x_numel; ++i) {
C
ceci3 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
      PADDLE_ENFORCE_GE(
          x_data[i], static_cast<T>(0),
          platform::errors::InvalidArgument(
              "Illegal input, input must be greater than  or equal to 0"));
      PADDLE_ENFORCE_LE(
          x_data[i], static_cast<T>(1),
          platform::errors::InvalidArgument(
              "Illegal input, input must be less than or equal to 1"));
      out_data[i] =
          (label_data[i] - static_cast<T>(1)) *
              std::max(real_log(static_cast<T>(1) - x_data[i]), (T)(-100)) -
          label_data[i] * std::max(real_log(x_data[i]), (T)(-100));
    }
  }
};

template <typename DeviceContext, typename T>
class BCELossGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* labels = ctx.Input<Tensor>("Label");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto dx_data = dx->mutable_data<T>(ctx.GetPlace());
    auto dout_data = dout->data<T>();
    auto x_data = x->data<T>();
    auto label_data = labels->data<T>();

    int x_numel = x->numel();

    // dx = dout * ((x - label)/(x - x^2))
    for (int i = 0; i < x_numel; ++i) {
      dx_data[i] =
          dout_data[i] * ((x_data[i] - label_data[i]) /
                          std::max((static_cast<T>(1) - x_data[i]) * x_data[i],
                                   static_cast<T>(1e-12)));
    }
  }
};

}  // namespace operators
}  // namespace paddle