addmm_op.h 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <boost/preprocessor/repetition/repeat.hpp>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/operators/eigen/eigen_function.h"
22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace ops = paddle::operators;
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

36 37
using Array1 = Eigen::DSizes<Eigen::DenseIndex, 1>;
using Array2 = Eigen::DSizes<Eigen::DenseIndex, 2>;
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

using Tensor = framework::Tensor;

constexpr int kMULMKLDNNINT8 = 1;

template <typename DeviceContext, typename T>
class AddMMKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* x = context.Input<Tensor>("X");
    const Tensor* y = context.Input<Tensor>("Y");

    auto input_dims = input->dims();
    auto x_dims = x->dims();
    auto y_dims = y->dims();

    // broadcast mode check
    if (x_dims[0] != input_dims[0]) {
      PADDLE_ENFORCE_EQ(input_dims[0], 1,
                        platform::errors::InvalidArgument(
                            "When x_dims[0] is not equal with input_dims[0], "
                            "input_dims[0] must be 1 but got %s",
                            input_dims[0]));
      PADDLE_ENFORCE_EQ(
          y_dims[1] == input_dims[1] || input_dims[1] == 1, true,
          platform::errors::InvalidArgument(
              "The input tensor shape mismatch, input shape=[%s], "
              "x shape=[%s], y shape=[%s]",
              input_dims, x_dims, y_dims));
    }
    // broadcast mode check
    if (y_dims[1] != input_dims[1]) {
      PADDLE_ENFORCE_EQ(input_dims[1], 1,
                        platform::errors::InvalidArgument(
                            "When y_dims[1] is not equal with input_dims[0], "
                            "input_dims[0] must be 1 but got %s",
                            input_dims[1]));
      PADDLE_ENFORCE_EQ(
          x_dims[0] == input_dims[0] || input_dims[0] == 1, true,
          platform::errors::InvalidArgument(
              "The input tensor shape mismatch, input shape=[%s], "
              "x shape=[%s], y shape=[%s]",
              input_dims, x_dims, y_dims));
    }
    // broadcast mode check
    PADDLE_ENFORCE_EQ(
        x_dims[1], y_dims[0],
        platform::errors::InvalidArgument(
            "The input tensor X's width must be equal with matrix Y' height. "
            "But received X's shape = [%s], Y's shape = [%s].",
            x_dims[1], y_dims[0]));

    auto* out = context.Output<Tensor>("Out");
    out->mutable_data<T>({x_dims[0], y_dims[1]}, context.GetPlace());

    float alpha = context.template Attr<float>("Alpha");
    float beta = context.template Attr<float>("Beta");

    auto blas = math::GetBlas<DeviceContext, T>(context);

    // calc broadcast dim
    Array2 bcast_dims;
    bcast_dims[0] = x_dims[0] / input_dims[0];
    bcast_dims[1] = y_dims[1] / input_dims[1];
    VLOG(3) << "bcast_dims=[" << bcast_dims[0] << "," << bcast_dims[1] << "]";
    // broadcast using eigen
    auto eigen_input = EigenTensor<T, 2>::From(*input);
    auto eigen_out = EigenTensor<T, 2>::From(*out);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
109 110
    EigenBroadcast<std::decay_t<decltype(place)>, T, 2>::Eval(
        place, eigen_out, eigen_input, bcast_dims);
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

    blas.GEMM(false, false, x_dims[0], y_dims[1], x_dims[1], alpha,
              x->data<T>(), x_dims[1], y->data<T>(), y_dims[1], beta,
              out->data<T>(), y_dims[1]);
  }
};

template <typename DeviceContext, typename T>
class AddMMGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::LoDTensor>("X");
    auto* y = ctx.Input<framework::LoDTensor>("Y");
    auto* dout = ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto in_dims = ctx.Input<framework::LoDTensor>("Input")->dims();
    auto* dinput =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("Input"));
    auto* dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));

    float alpha = ctx.Attr<float>("Alpha");
    float beta = ctx.Attr<float>("Beta");

    int total_elems = 0;

    VLOG(3) << "alpha: " << alpha << " beta: " << beta;

    if (dinput != nullptr) {
      dinput->set_lod(dout->lod());
    }
    if (dx != nullptr) {
      dx->set_lod(x->lod());
    }
    if (dy != nullptr) {
      dy->set_lod(y->lod());
    }

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
    if (dinput) {
      dinput->mutable_data<T>(ctx.GetPlace());
      total_elems = in_dims[0] * in_dims[1];
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
      auto eigen_dout = EigenTensor<T, 2>::From(*dout);
      auto eigen_dinput = EigenTensor<T, 2>::From(*dinput);

      bool row_compress = in_dims[0] != dout->dims()[0];
      bool col_compress = in_dims[1] != dout->dims()[1];
      auto eigen_dinput_shape = Array2(dinput->dims()[0], dinput->dims()[1]);

      if (row_compress && col_compress) {
        eigen_dinput.device(place) =
            eigen_dout.sum().eval().reshape(eigen_dinput_shape);
      } else if (row_compress) {
        eigen_dinput.device(place) =
            eigen_dout.sum(Array1(0)).eval().reshape(eigen_dinput_shape);
      } else if (col_compress) {
        eigen_dinput.device(place) =
            eigen_dout.sum(Array1(1)).eval().reshape(eigen_dinput_shape);
      } else {
        blas.VCOPY(total_elems, dout->data<T>(), dinput->data<T>());
      }

      blas.SCAL(total_elems, beta, dinput->data<T>());
    }
    if (dx) {
      dx->mutable_data<T>(ctx.GetPlace());
      total_elems = x->dims()[0] * x->dims()[1];
      // dx = dout * y'. dx: M x K, dout : M x N, y : K x N
      blas.MatMul(*dout, false, *y, true, dx);
      blas.SCAL(total_elems, alpha, dx->data<T>());
    }
    if (dy) {
      dy->mutable_data<T>(ctx.GetPlace());
      total_elems = x->dims()[1] * y->dims()[1];
      // dy = x' * dout. dy K x N, dout : M x N, x : M x K
      blas.MatMul(*x, true, *dout, false, dy);
      blas.SCAL(total_elems, alpha, dy->data<T>());
    }
  }
};

}  // namespace operators
}  // namespace paddle