grpc_serde.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_CUDA
#include <nccl.h>
#endif
#include <sys/time.h>
#include <thread>  // NOLINT

#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/distributed/grpc_bytebuffer_stream.h"
#include "paddle/fluid/operators/distributed/grpc_serde.h"
#include "paddle/fluid/operators/distributed/grpc_variable_response.h"
#include "paddle/fluid/operators/distributed/proto_encoder_helper.h"
#include "paddle/fluid/operators/distributed/sendrecvop_utils.h"
#include "paddle/fluid/platform/profiler.h"

namespace paddle {
namespace operators {
namespace distributed {

void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
                           ::grpc::ByteBuffer* msg,
                           const std::string& out_name) {
  // Default DestroyCallback does nothing, When using GPU
  // the CPU buffer need to be freed.
  DestroyCallback destroy_callback = [](void* backing) {};
  VarMsg request;
  void* payload = nullptr;
  size_t payload_size;

  request.set_varname(name);
  // Note: normally the profiler is enabled in 1 trainer, hence only
  // 1 trainer returns true for ShouldSendProfileState(). It tells PS
  // servers the trainer's profiling state so that PS can follow the
  // trainer.
  if (platform::ShouldSendProfileState()) {
    if (platform::IsProfileEnabled()) {
      request.set_profile(platform::kEnableProfiler);
    } else {
      request.set_profile(platform::kDisableProfiler);
    }
  }
  if (!out_name.empty()) {
    request.set_out_varname(out_name);
  }
  if (var->IsType<framework::LoDTensor>()) {
    request.set_type(::sendrecv::LOD_TENSOR);
    GetTensorPayload(var, ctx, &request, &payload, &payload_size);
  } else if (var->IsType<framework::SelectedRows>()) {
    request.set_type(::sendrecv::SELECTED_ROWS);
    GetSelectedRowsPayload(var, ctx, &request, &payload, &payload_size);
#ifdef PADDLE_WITH_CUDA
  } else if (var->IsType<ncclUniqueId>()) {
    request.set_type(::sendrecv::NCCL_ID);
#endif
  } else {
    PADDLE_THROW("Serialize does not support type: %s",
                 typeid(var->Type()).name());
  }

  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
    // GPU data is copied to CPU buffer when sending,
    // free the buffer when possible.
    destroy_callback = [](void* backing) {
      platform::CUDAPinnedPlace cuda_pinned;
      memory::Free(cuda_pinned, backing);
    };
#endif
  }

  std::string header;
  request.AppendToString(&header);
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
  e.WriteRawBytes(std::string(header.data(), header.size()));
// NCCLID is copied directly to the message, return bytebuffer
// with only one slice if serializing NCCLID.
#ifdef PADDLE_WITH_CUDA
  if (var->IsType<ncclUniqueId>()) {
    e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
                              NCCL_UNIQUE_ID_BYTES);
    const ncclUniqueId& uid = var->Get<ncclUniqueId>();
    e.WriteRawBytes(std::string(uid.internal, NCCL_UNIQUE_ID_BYTES));

    // for serialize NCCL_ID
    ::grpc::Slice slices(e.size());
    memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
    ::grpc::ByteBuffer tmp(&slices, 1);
    msg->Swap(&tmp);
    return;
  }
#endif

  e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

  if (var->IsType<framework::SelectedRows>()) {
    auto* slr = var->GetMutable<framework::SelectedRows>();
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
    size_t rows_memory_size =
        slr->rows().size() * framework::SizeOfType(typeid(int64_t));
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
            rows_memory_size, [](void* backing) {},
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
                               const framework::Scope* scope,
                               framework::Variable** var) {
  operators::distributed::GRPCVariableResponse resp(scope, &ctx);
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
  *var = resp.GetVar();
}

}  // namespace distributed
}  // namespace operators
}  // namespace paddle