train_with_new_api.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
from os.path import join as join_path
import paddle.v2 as paddle
import paddle.v2.layer as layer
import paddle.v2.activation as activation
import paddle.v2.data_type as data_type


def sequence_conv_pool(input,
                       input_size,
                       context_len,
                       hidden_size,
                       name=None,
                       context_start=None,
                       pool_type=None,
                       context_proj_layer_name=None,
                       context_proj_param_attr=False,
                       fc_layer_name=None,
                       fc_param_attr=None,
                       fc_bias_attr=None,
                       fc_act=None,
                       pool_bias_attr=None,
                       fc_attr=None,
                       context_attr=None,
                       pool_attr=None):
    """
    Text convolution pooling layers helper.

    Text input => Context Projection => FC Layer => Pooling => Output.

    :param name: name of output layer(pooling layer name)
    :type name: basestring
    :param input: name of input layer
    :type input: LayerOutput
    :param context_len: context projection length. See
                        context_projection's document.
    :type context_len: int
    :param hidden_size: FC Layer size.
    :type hidden_size: int
    :param context_start: context projection length. See
                          context_projection's context_start.
    :type context_start: int or None
    :param pool_type: pooling layer type. See pooling_layer's document.
    :type pool_type: BasePoolingType.
    :param context_proj_layer_name: context projection layer name.
                                    None if user don't care.
    :type context_proj_layer_name: basestring
    :param context_proj_param_attr: context projection parameter attribute.
                                    None if user don't care.
    :type context_proj_param_attr: ParameterAttribute or None.
    :param fc_layer_name: fc layer name. None if user don't care.
    :type fc_layer_name: basestring
    :param fc_param_attr: fc layer parameter attribute. None if user don't care.
    :type fc_param_attr: ParameterAttribute or None
    :param fc_bias_attr: fc bias parameter attribute. False if no bias,
                         None if user don't care.
    :type fc_bias_attr: ParameterAttribute or None
    :param fc_act: fc layer activation type. None means tanh
    :type fc_act: BaseActivation
    :param pool_bias_attr: pooling layer bias attr. None if don't care.
                           False if no bias.
    :type pool_bias_attr: ParameterAttribute or None.
    :param fc_attr: fc layer extra attribute.
    :type fc_attr: ExtraLayerAttribute
    :param context_attr: context projection layer extra attribute.
    :type context_attr: ExtraLayerAttribute
    :param pool_attr: pooling layer extra attribute.
    :type pool_attr: ExtraLayerAttribute
    :return: output layer name.
    :rtype: LayerOutput
    """
    # Set Default Value to param
    context_proj_layer_name = "%s_conv_proj" % name \
        if context_proj_layer_name is None else context_proj_layer_name

    with layer.mixed(
            name=context_proj_layer_name,
            size=input_size * context_len,
            act=activation.Linear(),
            layer_attr=context_attr) as m:
        m += layer.context_projection(
            input=input,
            context_len=context_len,
            context_start=context_start,
            padding_attr=context_proj_param_attr)

    fc_layer_name = "%s_conv_fc" % name \
        if fc_layer_name is None else fc_layer_name
    fl = layer.fc(name=fc_layer_name,
                  input=m,
                  size=hidden_size,
                  act=fc_act,
                  layer_attr=fc_attr,
                  param_attr=fc_param_attr,
                  bias_attr=fc_bias_attr)

    return layer.pooling(
        name=name,
        input=fl,
        pooling_type=pool_type,
        bias_attr=pool_bias_attr,
        layer_attr=pool_attr)


def convolution_net(input_dim,
                    class_dim=2,
                    emb_dim=128,
                    hid_dim=128,
                    is_predict=False):
    data = layer.data("word", data_type.integer_value_sequence(input_dim))
    emb = layer.embedding(input=data, size=emb_dim)
    conv_3 = sequence_conv_pool(
        input=emb, input_size=emb_dim, context_len=3, hidden_size=hid_dim)
    conv_4 = sequence_conv_pool(
        input=emb, input_size=emb_dim, context_len=4, hidden_size=hid_dim)
    output = layer.fc(input=[conv_3, conv_4],
                      size=class_dim,
                      act=activation.Softmax())
    lbl = layer.data("label", data_type.integer_value(1))
    cost = layer.classification_cost(input=output, label=lbl)
    return cost


def data_reader():
    data_dir = "./data/pre-imdb"
    train_file = "train_part_000"
    test_file = "test_part_000"
    dict_file = "dict.txt"
    train_file = join_path(data_dir, train_file)
    test_file = join_path(data_dir, test_file)
    dict_file = join_path(data_dir, dict_file)

    with open(dict_file, 'r') as fdict, open(train_file, 'r') as fdata:
        dictionary = dict()
        for i, line in enumerate(fdict):
            dictionary[line.split('\t')[0]] = i

        for line_count, line in enumerate(fdata):
            label, comment = line.strip().split('\t\t')
            label = int(label)
            words = comment.split()
            word_slot = [dictionary[w] for w in words if w in dictionary]
            yield (word_slot, label)


if __name__ == '__main__':
    data_dir = "./data/pre-imdb"
    train_list = "train.list"
    test_list = "test.list"
    dict_file = "dict.txt"
    dict_dim = len(open(join_path(data_dir, "dict.txt")).readlines())
    class_dim = len(open(join_path(data_dir, 'labels.list')).readlines())
    is_predict = False

    # init
    paddle.init(use_gpu=True, trainer_count=4)

    # network config
    cost = convolution_net(dict_dim, class_dim=class_dim, is_predict=is_predict)

    # create parameters
    parameters = paddle.parameters.create(cost)

    adam_optimizer = paddle.optimizer.Adam(learning_rate=0.01)

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
H
hedaoyuan 已提交
167
            if event.batch_id % 100 == 0:
168 169 170 171 172 173 174 175 176
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)

    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=adam_optimizer)

    trainer.train(
        reader=paddle.reader.batched(
H
hedaoyuan 已提交
177 178
            paddle.reader.shuffle(
                data_reader, buf_size=4096), batch_size=128),
179 180 181 182
        event_handler=event_handler,
        reader_dict={'word': 0,
                     'label': 1},
        num_passes=10)