sequence_pool_op.h 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
24 25 26
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
27 28 29 30
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

31 32 33 34 35 36 37 38 39
enum SeqPoolType {
  AVERAGE = 0,
  SUM = 1,
  SQRT = 2,  // square_root_n
  MAX = 3,
  LAST = 4,
  FIRST = 5
};

40
template <typename Place, typename T>
Y
Yu Yang 已提交
41
class SequencePoolKernel : public framework::OpKernel<T> {
42 43 44 45
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
46
    int strategy = context.Attr<int>("strategy");
47 48

    auto dims = in->dims();
Q
Qiao Longfei 已提交
49
    auto lod = in->lod();
50 51
    int64_t w = in->numel() / dims[0];

Q
Qiao Longfei 已提交
52 53 54 55 56 57 58 59 60 61 62
    // InferShape by lod
    PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
    PADDLE_ENFORCE_GE(
        dims[0],
        /*batch size = */ static_cast<int64_t>(lod[0].size() - 1),
        "The first dimension of Input(X) must be large than batch size.");
    dims[0] = lod[0].size() - 1;
    out->Resize({dims});

    auto lod_level_0 = lod[0];

63 64
    out->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();
Q
Qiao Longfei 已提交
65 66 67
    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      Tensor in_t = in->Slice<T>(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
68
      Tensor out_t = out->Slice<T>(i, i + 1);
Q
Qiao Longfei 已提交
69
      int64_t h = static_cast<int64_t>(lod_level_0[i + 1] - lod_level_0[i]);
70 71
      auto in_e = EigenMatrix<T>::From(in_t, framework::make_ddim({h, w}));
      auto out_e = EigenVector<T>::Flatten(out_t);
72 73 74 75 76 77 78 79 80

      switch (strategy) {
        case AVERAGE:
          out_e.device(place) = in_e.mean(Eigen::array<int, 1>({{0}}));
          break;
        case SUM:
          out_e.device(place) = in_e.sum(Eigen::array<int, 1>({{0}}));
          break;
        default:
L
Luo Tao 已提交
81
          PADDLE_THROW("unsupported pooling strategy");
82
      }
83 84 85 86 87
    }
  }
};

template <typename Place, typename T>
Y
Yu Yang 已提交
88
class SequencePoolGradKernel : public framework::OpKernel<T> {
89 90
 public:
  void Compute(const framework::ExecutionContext& context) const override {
91
    auto* in = context.Input<LoDTensor>("X");
92
    auto* out_g = context.Input<LoDTensor>(framework::GradVarName("Out"));
93
    auto* in_g = context.Output<LoDTensor>(framework::GradVarName("X"));
94
    int strategy = context.Attr<int>("strategy");
95 96

    auto dims = in->dims();
97
    auto lod = in->lod()[0];
98 99 100 101
    int64_t w = in->numel() / dims[0];

    in_g->mutable_data<T>(context.GetPlace());
    auto place = context.GetEigenDevice<Place>();
102 103 104
    for (int i = 0; i < static_cast<int>(lod.size()) - 1; ++i) {
      auto in_g_t = in_g->Slice<T>(static_cast<int>(lod[i]),
                                   static_cast<int>(lod[i + 1]));
105
      auto out_g_t = out_g->Slice<T>(i, i + 1);
106
      int64_t h = static_cast<int64_t>(lod[i + 1] - lod[i]);
107 108
      auto in_g_e = EigenMatrix<T>::From(in_g_t, {h, w});
      auto out_g_e = EigenMatrix<T>::From(out_g_t, {1, w});
109
      Eigen::DSizes<int, 2> bcast(h, 1);
110 111 112 113 114 115 116 117 118

      switch (strategy) {
        case AVERAGE:
          in_g_e.device(place) = (out_g_e / static_cast<T>(h)).broadcast(bcast);
          break;
        case SUM:
          in_g_e.device(place) = (out_g_e).broadcast(bcast);
          break;
        default:
L
Luo Tao 已提交
119
          PADDLE_THROW("unsupported pooling strategy");
120
      }
121 122 123 124 125 126
    }
  }
};

}  // namespace operators
}  // namespace paddle