pull_sparse_v2_op.cc 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/pull_sparse_v2_op.h"
#include <string>

namespace paddle {
namespace operators {

class PullSparseV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_GE(ctx->Inputs("Ids").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "Input(Ids) of PullSparseV2Op can not be null"));
    PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "Output(Out) of PullSparseV2Op can not be null"));

    auto hidden_size =
        static_cast<uint32_t>(ctx->Attrs().Get<int>("EmbeddingDim"));
    auto all_ids_dim = ctx->GetInputsDim("Ids");
    const size_t n_ids = all_ids_dim.size();
    std::vector<framework::DDim> outs_dims;
    outs_dims.resize(n_ids);
    for (size_t i = 0; i < n_ids; ++i) {
      const auto ids_dims = all_ids_dim[i];
      auto out_dim = framework::vectorize(ids_dims);
      out_dim.push_back(hidden_size);
      outs_dims[i] = framework::make_ddim(out_dim);
    }
    ctx->SetOutputsDim("Out", outs_dims);
    for (size_t i = 0; i < n_ids; ++i) {
      ctx->ShareLoD("Ids", "Out", i, i);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(framework::proto::VarType::FP32,
                                   ctx.device_context());
  }
};

class PullSparseV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Ids",
             "Input tensors with type int64 contains "
             "the ids to be looked up in PSLib. ")
        .AsDuplicable();
    AddInput("W", "The lookup table tensors.").AsDuplicable();
    AddOutput("Out", "The lookup results tensors.").AsDuplicable();
    AddAttr<int>("EmbeddingDim", "(int, the embedding hidden size")
        .SetDefault(11);
    AddAttr<int>("TableId", "(int, the table id of this embedding")
        .SetDefault(0);
    AddAttr<std::string>("AccessorClass", "(string, the class name of accessor")
        .SetDefault("");
    AddAttr<std::string>("CtrLabelName", "(string, ctr label name")
        .SetDefault("");
    AddAttr<int>("PaddingId", "(int, the padding id of this embedding")
        .SetDefault(0);
    AddAttr<bool>("ScaleSparseGrad",
                  "(bool, whether scale sparse gradient with batch size")
        .SetDefault(true);
    AddAttr<std::vector<std::string>>("InputNames", "(vector, slot names")
        .SetDefault(std::vector<std::string>());
    AddAttr<bool>("is_distributed", "(bool, it must be true").SetDefault(true);
    AddComment(R"DOC(
Pull Sparse V2 Operator.

This operator is used to perform lookups on the PSLib
then concatenated into a dense tensor.

The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

)DOC");
  }
};

template <typename T>
class PushSparseV2OpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> retv) const override {
    retv->SetType("push_sparse_v2");
    retv->SetInput("Ids", this->Input("Ids"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetInput("W", this->Input("W"));
    retv->SetOutput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetAttrMap(this->Attrs());
  }
};

class PushSparseV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {}

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(pull_sparse_v2, ops::PullSparseV2Op, ops::PullSparseV2OpMaker,
                  ops::PushSparseV2OpMaker<paddle::framework::OpDesc>,
                  ops::PushSparseV2OpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(push_sparse_v2, ops::PushSparseV2Op);
REGISTER_OP_CPU_KERNEL(pull_sparse_v2, ops::PullSparseV2CPUKernel<float>)
REGISTER_OP_CPU_KERNEL(push_sparse_v2, ops::PushSparseV2CPUKernel<float>)