op_gen.py 70.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import yaml

# =====================================
# String Template for h file code gen
# =====================================
NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{
{input}
}} // namespace {namespace}"""

H_FILE_TEMPLATE = """#ifdef GET_OP_LIST
#undef GET_OP_LIST
{op_declare}
#else
31
// This file is generated by "paddle/fluid/ir/dialect/op_gen.py"
32

33 34
#include <vector>

35 36
#include "paddle/ir/core/builder.h"
#include "paddle/ir/core/operation_utils.h"
37
#include "paddle/ir/core/op_base.h"
38
#include "paddle/fluid/ir/dialect/utils.h"
39
#include "paddle/fluid/ir/interface/op_yaml_info.h"
40
#include "paddle/fluid/ir/interface/infershape.h"
H
hong 已提交
41 42 43
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"

44 45 46 47 48 49 50 51 52 53 54 55 56 57
{input}
#endif
"""

GET_OP_LIST_TEMPALTE = """{}
"""

OP_DECLARE_TEMPLATE = """
class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{
 public:
  using Op::Op;
  static const char *name() {{ return "{dialect_op_name}"; }}
  {attribute_declare}
  static constexpr uint32_t attributes_num = {attribute_num};
58
  static OpInfoTuple GetOpInfo();
59
  static void Build({build_args});
60
  {build_mutable_attr_is_input}
61
  static void Verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes);
62
{get_inputs_and_outputs}
H
hong 已提交
63
{exclusive_interface}
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
}};
"""
op_0_attribute_declare_str = (
    "static constexpr const char **attributes_name = nullptr;"
)
op_n_attribute_declare_str = (
    "static const char *attributes_name[{attribute_num}];"
)

OP_GET_INPUT_TEMPLATE = """  ir::OpOperand {input_name}() {{ return operation()->GetOperandByIndex({input_index}); }}
"""
OP_GET_OUTPUT_TEMPLATE = """  ir::OpResult {output_name}() {{ return operation()->GetResultByIndex({output_index}); }}
"""

# =====================================
# String Template for cc file code gen
# =====================================
81 82 83
CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_gen.py"

#include "{h_file}"
84 85
#include "paddle/fluid/ir/dialect/pd_type.h"
#include "paddle/fluid/ir/dialect/pd_attribute.h"
86 87
#include "paddle/ir/core/builtin_attribute.h"
#include "paddle/ir/core/builtin_type.h"
88
#include "paddle/ir/core/builtin_op.h"
89
#include "paddle/ir/core/ir_context.h"
90
#include "paddle/phi/core/enforce.h"
91 92 93 94 95 96 97
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/backward.h"
98
#include "paddle/phi/api/lib/utils/allocator.h"
99

100 101 102 103 104 105 106
{input}
"""

OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """
const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }};
"""

107
# get op info
108 109
OP_INFO_TEMPLATE = """
OpInfoTuple {op_name}::GetOpInfo() {{
110 111 112 113 114
  std::vector<paddle::dialect::OpInputInfo> inputs = {{ {inputs} }};
  std::vector<paddle::dialect::OpAttributeInfo> attributes = {{ {attributes} }};
  std::vector<paddle::dialect::OpOutputInfo> outputs = {{ {outputs} }};
  paddle::dialect::OpRunTimeInfo run_time_info = OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}});
  return std::make_tuple(inputs, attributes, outputs, run_time_info);
115 116
}}
"""
117
CONSTRUCT_INPUT_INFO_TEMPLATE = """OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer}, {is_mutable_attribute})"""
118 119 120 121 122 123 124
CONSTRUCT_OUTPUT_INFO_TEMPLATE = (
    """OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})"""
)
CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = (
    """OpAttributeInfo("{name}", "{typename}", "{data_type}")"""
)

125 126
# build
OP_BUILD_TEMPLATE = """
127
void {op_name}::Build({build_args}) {{
128
{build_mutable_attributes}
129 130 131 132 133 134
{build_inputs}
{build_attributes}
{build_outputs}
}}
"""

135
# verify
136
OP_VERIFY_TEMPLATE = """
137
void {op_name}::Verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes) {{
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  VLOG(4) << "Verifying inputs, outputs and attributes for: {op_name}.";

  // Verify inputs type:
  PADDLE_ENFORCE_EQ(inputs.size(), {inputs_size},
                    phi::errors::PreconditionNotMet("The size %d of inputs must be equal to {inputs_size}.", inputs.size()));
  {inputs_type_check}
  // Verify outputs type:
  PADDLE_ENFORCE_EQ(outputs.size(), {outputs_size},
                    phi::errors::PreconditionNotMet("The size %d of outputs must be equal to {outputs_size}.", outputs.size()));
  {outputs_type_check}
  // Verify if attributes contain attribute name in attributes_name:
  {attributes_check}
}}
"""

153
GRAD_OP_VERIFY_TEMPLATE = """
154
void {op_name}::Verify(const std::vector<ir::OpResult> &inputs, const std::vector<ir::Type> &outputs, const ir::AttributeMap &attributes) {{
155 156 157 158 159 160
  (void)inputs;
  (void)outputs;
  (void)attributes;
}}
"""

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
INPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  """
INPUT_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}].type().isa<ir::VectorType>()) {{
    for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
  }}
  """
INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{
    if (inputs[{index}].type().isa<ir::VectorType>()) {{
      for (size_t i = 0; i < inputs[{index}].type().dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th input."));
    }}
  }}
  """

OUTPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                    phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  """
OUTPUT_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}].isa<ir::VectorType>()) {{
    for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
      PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }} else {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
  }}
  """
OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{
    if (outputs[{index}].isa<ir::VectorType>()) {{
      for (size_t i = 0; i < outputs[{index}].dyn_cast<ir::VectorType>().size(); i++) {{
        PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast<ir::VectorType>()[i].isa<{standard}>(), true,
                          phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
      }}
    }} else {{
      PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true,
                        phi::errors::PreconditionNotMet("Type validation failed for the {index}th output."));
    }}
  }}
  """

223
ATTRIBUTE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0 && attributes.at("{attribute_name}").isa<{standard}>(), true,
224 225
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  """
226
ATTRIBUTE_VECTOR_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0 && attributes.at("{attribute_name}").isa<ir::ArrayAttribute>(), true,
227 228 229 230 231 232
                    phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  for (size_t i = 0; i < attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>().size(); i++) {{
    PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").dyn_cast<ir::ArrayAttribute>()[i].isa<{standard}>(), true,
                      phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right."));
  }}
  """
H
hong 已提交
233 234 235 236 237 238
OP_INFER_SHAPE_TEMPLATE = """
void {op_name}::InferShape( phi::InferMetaContext *infer_meta ) {{
  auto fn = PD_INFER_META(phi::{infer_meta_func});
  fn(infer_meta);
}}
"""
239 240


241 242 243 244 245 246 247 248 249 250 251 252
def to_phi_and_fluid_op_name(op_item):
    # Templat: - op : phi_name (fluid_name)
    names = op_item.split('(')
    if len(names) == 1:
        phi_fluid_name = names[0].strip()
        return phi_fluid_name, phi_fluid_name
    else:
        phi_name = names[0].strip()
        fluid_name = names[1].split(')')[0].strip()
        return phi_name, fluid_name


253 254 255 256 257 258 259 260 261
scalar_type_maps = {
    'int': 'ir::Int32_tAttribute',
    'int64_t': 'ir::Int64_tAttribute',
    'float': 'ir::FloatAttribute',
    'dobule': 'ir::DoubleAttribute',
    'bool': 'ir::BoolAttribute',
}


262
# =====================================
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
# Parse Op Compat From Yaml
# =====================================
class OpCompatParser:
    def __init__(self, ops_compat_yaml_file):
        self.ops_compat_yaml_file = ops_compat_yaml_file
        with open(self.ops_compat_yaml_file, "r") as f:
            self.ops_compat = yaml.safe_load(f)

    def get_compat(self, op_name):
        for compat in self.ops_compat:
            phi_name, fluid_name = to_phi_and_fluid_op_name(compat['op'])
            if op_name == phi_name:
                return compat
        return None


# =====================================
# Parse Op Information From Yaml
281 282
# =====================================
class OpInfoParser:
283
    def __init__(self, op_yaml_item, op_compat_item):
284
        self.op_yaml_item = op_yaml_item
285
        self.op_compat_item = op_compat_item
286
        self.op_phi_name = self.parse_op_phi_name()
287
        # parse inputs
288 289 290
        self.input_name_list = self.parse_input_name_list()
        self.input_type_list = self.parse_input_type_list()
        self.input_optional_list = self.parse_input_optional_list()
291
        self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list()
292 293 294
        self.cross_check(
            self.input_name_list, self.input_type_list, self.input_optional_list
        )
295

296
        # parse outputs
297 298
        self.output_name_list = self.parse_output_name_list()
        self.output_type_list = self.parse_output_type_list()
299
        self.output_size_list = self.parse_output_size_list()
300
        self.output_optional_list = self.parse_output_optional_list()
301
        self.output_intermediate_list = self.parse_output_intermediate_list()
302 303 304 305 306
        self.cross_check(
            self.output_name_list,
            self.output_type_list,
            self.output_optional_list,
        )
307

308
        # parse attributes
309 310 311
        self.attr_types_map = {
            'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'],
            'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'],
312 313 314 315
            'Scalar(int)': ['ir::Int32_tAttribute', 'int'],
            'Scalar(int64_t)': ['ir::Int64_tAttribute', 'int64_t'],
            'Scalar(float)': ['ir::FloatAttribute', 'float'],
            'Scalar(dobule)': ['ir::DoubleAttribute', 'dobule'],
316 317
            'Scalar[]': [
                'ir::ArrayAttribute<paddle::dialect::ScalarAttribute>',
318
                'const std::vector<Scalar>&',
319 320 321 322 323 324 325 326 327
            ],
            'int': ['ir::Int32_tAttribute', 'int'],
            'int32_t': ['ir::Int32_tAttribute', 'int32_t'],
            'int64_t': ['ir::Int64_tAttribute', 'int64_t'],
            'long': ['ir::LongAttribute', 'long'],
            'size_t': ['ir::Size_tAttribute', 'size_t'],
            'float': ['ir::FloatAttribute', 'float'],
            'float[]': [
                'ir::ArrayAttribute<ir::FloatAttribute>',
328
                'const std::vector<float>&',
329 330 331 332 333
            ],
            'double': ['ir::DoubleAttribute', 'double'],
            'bool': ['ir::BoolAttribute', 'bool'],
            'bool[]': [
                'ir::ArrayAttribute<ir::BoolAttribute>',
334
                'const std::vecot<bool>&',
335 336 337 338
            ],
            'str': ['ir::StrAttribute', 'std::string'],
            'str[]': [
                'ir::ArrayAttribute<ir::StrAttribute>',
339
                'const std::vector<std::string>&',
340 341 342 343 344 345 346 347 348
            ],
            'Place': ['paddle::dialect::PlaceAttribute', 'Place'],
            'DataLayout': [
                'paddle::dialect::DataLayoutAttribute',
                'DataLayout',
            ],
            'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'],
            'int64_t[]': [
                'ir::ArrayAttribute<ir::Int64_tAttribute>',
349
                'const std::vector<int64_t>&',
350 351 352
            ],
            'int[]': [
                'ir::ArrayAttribute<ir::Int32_tAttribute>',
353
                'const std::vector<int>&',
354 355
            ],
        }
356 357
        self.attribute_name_list = self.parse_attribute_name_list()
        self.attribute_type_list = self.parse_attribute_type_list()
358 359 360
        self.attribute_build_arg_type_list = (
            self.parse_attribute_build_arg_type_list()
        )
361
        self.attribute_data_type_list = self.parse_attribute_data_type_list()
362 363 364
        self.attribute_default_value_list = (
            self.parse_attribute_default_value_list()
        )
365 366
        self.cross_check(self.attribute_name_list, self.attribute_type_list)

367 368 369 370 371 372
        # parse mutable attributes (as inputs)
        (
            self.mutable_attribute_name_list,
            self.mutable_attribute_type_list,
        ) = self.parse_mutable_attribute()

373 374 375 376 377 378 379 380
        (
            self.non_mutable_attribute_name_list,
            self.non_mutable_attribute_type_list,
            self.non_mutable_attribute_data_type_list,
            self.non_mutable_attribute_build_arg_type_list,
            self.non_mutable_attribute_default_value_list,
        ) = self.parse_non_nutable_attribute()

381 382 383
        # parse infermeta && kernel
        self.infer_meta_map = self.parse_infer_meta_map()
        self.kernel_map = self.parse_kernel_map()
H
hong 已提交
384 385 386 387 388
        if 'infer_meta' in self.op_yaml_item:
            self.infer_shape_func = self.op_yaml_item['infer_meta']["func"]
        else:
            self.infer_shape_func = None

389 390 391 392 393 394 395 396 397
    def cross_check(self, name_list, type_list, optional_list=None):
        assert len(name_list) == len(
            type_list
        ), "name list size != type list size."
        if optional_list is not None:
            assert len(type_list) == len(
                optional_list
            ), "type list size != optional list size."

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
    def parse_op_phi_name(self):
        if self.parse_op_inplace_info() is None:
            return [self.op_yaml_item['name']]
        else:
            if self.op_yaml_item['name'][-1] == "_":
                return [self.op_yaml_item['name']]
            else:
                return [
                    self.op_yaml_item['name'],
                    self.op_yaml_item['name'] + "_",
                ]

    def parse_op_inplace_info(self):
        if 'inplace' in self.op_yaml_item:
            return self.op_yaml_item['inplace']
        return None

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def parse_mutable_attribute(self):
        """
        {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'}
        """
        mutable_attribute_name_list = []
        mutable_attribute_type_list = []
        # scalar
        if (self.op_compat_item is not None) and (
            'scalar' in self.op_compat_item
        ):
            for scalar_attr in self.op_compat_item['scalar'].keys():
                if 'data_type' in self.op_compat_item['scalar'][scalar_attr]:
                    if (
                        self.op_compat_item['scalar'][scalar_attr]['data_type']
                        == "std::string"
                    ):
                        # see isclose and allclose in op_compat.yaml
                        mutable_attribute_name_list.append(scalar_attr)
                        mutable_attribute_type_list.append(
                            ["ir::StrAttribute", "std::string"]
                        )
                    else:
437 438 439 440 441 442 443
                        if (
                            scalar_attr == "depth"
                            and self.op_phi_name[0] == "one_hot"
                        ):
                            mutable_attribute_name_list.append("num_classes")
                        else:
                            mutable_attribute_name_list.append(scalar_attr)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
                        mutable_attribute_type_list.append(
                            [
                                "paddle::dialect::ScalarAttribute",
                                self.op_compat_item['scalar'][scalar_attr][
                                    'data_type'
                                ],
                            ]
                        )
                # See eye in op_compat.yaml
                else:
                    mutable_attribute_name_list.append(scalar_attr)
                    mutable_attribute_type_list.append(
                        [
                            "paddle::dialect::ScalarAttribute",
                            self.attribute_data_type_list[
                                self.attribute_name_list.index(scalar_attr)
                            ],
                        ]
                    )

        # int_array
        if (self.op_compat_item is not None) and (
            'int_array' in self.op_compat_item
        ):
            for int_array_attr in self.op_compat_item['int_array']:
                mutable_attribute_name_list.append(int_array_attr)
                mutable_attribute_type_list.append(
                    [
                        "paddle::dialect::IntArrayAttribute",
                        self.op_compat_item['int_array'][int_array_attr][
                            'data_type'
                        ],
                    ]
                )
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        sorted_mutable_attribute_name_list = []
        sorted_mutable_attribute_type_list = []
        for attr_name in self.attribute_name_list:
            if attr_name in mutable_attribute_name_list:
                sorted_mutable_attribute_name_list.append(attr_name)
                sorted_mutable_attribute_type_list.append(
                    mutable_attribute_type_list[
                        mutable_attribute_name_list.index(attr_name)
                    ]
                )

        return (
            sorted_mutable_attribute_name_list,
            sorted_mutable_attribute_type_list,
        )

    def parse_non_nutable_attribute(self):
        op_non_mutable_attribute_name_list = []
        op_non_mutable_attribute_type_list = []
        op_non_mutable_attribute_data_type_list = []
        op_non_mutable_attribute_build_arg_type_list = []
        op_non_mutable_attribute_default_value_list = []
        for idx in range(len(self.attribute_name_list)):
            if (
                self.attribute_name_list[idx]
                not in self.mutable_attribute_name_list
            ):
                op_non_mutable_attribute_name_list.append(
                    self.attribute_name_list[idx]
                )
                op_non_mutable_attribute_type_list.append(
                    self.attribute_type_list[idx]
                )
                op_non_mutable_attribute_data_type_list.append(
                    self.attribute_data_type_list[idx]
                )
                op_non_mutable_attribute_build_arg_type_list.append(
                    self.attribute_build_arg_type_list[idx]
                )
                op_non_mutable_attribute_default_value_list.append(
                    self.attribute_default_value_list[idx]
                )
        return (
            op_non_mutable_attribute_name_list,
            op_non_mutable_attribute_type_list,
            op_non_mutable_attribute_data_type_list,
            op_non_mutable_attribute_build_arg_type_list,
            op_non_mutable_attribute_default_value_list,
        )
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    def parse_input_name_list(self):
        name_list = []
        for input_info in self.op_yaml_item['inputs']:
            name_list.append(input_info['name'])
        return name_list

    def parse_input_type_list(self):
        input_types_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for input_info in self.op_yaml_item['inputs']:
            assert (
                input_info['typename'] in input_types_map
            ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}."
            type_list.append(input_types_map[input_info['typename']])
        return type_list

    def parse_input_optional_list(self):
        optional_list = []
        for input_info in self.op_yaml_item['inputs']:
550 551 552 553
            if input_info['optional']:
                optional_list.append("true")
            else:
                optional_list.append("false")
554 555
        return optional_list

556 557 558 559 560 561 562 563 564
    def parse_input_no_need_buffer_list(self):
        no_need_buffer_list = []
        for input_info in self.op_yaml_item['inputs']:
            if input_info['no_need_buffer']:
                no_need_buffer_list.append("true")
            else:
                no_need_buffer_list.append("false")
        return no_need_buffer_list

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    def parse_output_name_list(self):
        name_list = []
        for output_info in self.op_yaml_item['outputs']:
            name_list.append(output_info['name'])
        return name_list

    def parse_output_type_list(self):
        output_type_map = {
            'Tensor': 'paddle::dialect::DenseTensorType',
            'Tensor[]': 'ir::VectorType<paddle::dialect::DenseTensorType>',
        }
        type_list = []
        for output_info in self.op_yaml_item['outputs']:
            assert (
                output_info['typename'] in output_type_map
            ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}."
            type_list.append(output_type_map[output_info['typename']])
        return type_list

584 585 586 587 588 589 590 591 592
    def parse_output_size_list(self):
        size_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'size' in output_info:
                size_list.append(output_info['size'])
            else:
                size_list.append(None)
        return size_list

593 594 595 596
    def parse_output_optional_list(self):
        optional_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'optional' in output_info:
597 598 599 600
                if output_info['optional']:
                    optional_list.append("true")
                else:
                    optional_list.append("false")
601
            else:
602
                optional_list.append("false")
603 604
        return optional_list

605 606 607 608 609 610 611 612 613 614 615 616
    def parse_output_intermediate_list(self):
        intermediate_list = []
        for output_info in self.op_yaml_item['outputs']:
            if 'intermediate' in output_info:
                if output_info['intermediate']:
                    intermediate_list.append("true")
                else:
                    intermediate_list.append("false")
            else:
                intermediate_list.append("false")
        return intermediate_list

617 618 619 620 621 622
    def parse_attribute_name_list(self):
        name_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            name_list.append(attribute_info['name'])
        return name_list

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    def parse_attribute_build_arg_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
                attribute_info['typename'] in self.attr_types_map
            ), f"{self.op_phi_name} : Attr type error."

            # Scalar & IntArray has data_type
            temp_type = self.attr_types_map[attribute_info['typename']][1]
            if 'Scalar' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            if 'IntArray' in temp_type:
                if 'data_type' in attribute_info:
                    temp_type = attribute_info['data_type']
            type_list.append(self.get_phi_dtype_name(temp_type))
        return type_list

641 642 643 644
    def parse_attribute_type_list(self):
        type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            assert (
645
                attribute_info['typename'] in self.attr_types_map
646
            ), f"{self.op_phi_name} : Attr type error."
647
            type_list.append(self.attr_types_map[attribute_info['typename']][0])
648 649
        return type_list

650 651 652 653 654 655 656 657 658
    def parse_attribute_data_type_list(self):
        data_type_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'data_type' in attribute_info:
                data_type_list.append(attribute_info['data_type'])
            else:
                data_type_list.append("")
        return data_type_list

659 660 661 662 663 664 665 666
    def parse_attribute_default_value_list(self):
        default_value_list = []
        for attribute_info in self.op_yaml_item['attrs']:
            if 'default_value' in attribute_info:
                default_value = attribute_info['default_value']
                default_value_list.append(
                    self.get_phi_dtype_name(default_value)
                )
667
            else:
668 669
                default_value_list.append(None)
        return default_value_list
670

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
    def parse_infer_meta_map(self):
        if 'infer_meta' in self.op_yaml_item:
            return self.op_yaml_item['infer_meta']
        else:
            return None

    def parse_kernel_map(self):
        if 'kernel' in self.op_yaml_item:
            return self.op_yaml_item['kernel']
        else:
            return None

    def get_phi_dtype_name(self, name):
        name = name.replace('Scalar', 'phi::Scalar')
        name = name.replace('IntArray', 'phi::IntArray')
        name = name.replace('DataLayout', 'phi::DataLayout')
        name = name.replace('DataType', 'phi::DataType')
        if name.startswith(
            (
                "Place",
                "CPUPlace",
                "GPUPlace",
                "GPUPinnedPlace",
                "XPUPlace",
                "IPUPlace",
                "CustomPlace",
            )
        ):
            return "phi::" + name
        return name
701 702 703 704 705 706 707 708 709 710 711


def to_pascal_case(s):
    words = s.split("_")
    if s[-1] == "_":
        return "".join([word.capitalize() for word in words]) + "_"
    else:
        return "".join([word.capitalize() for word in words]) + ""


# =====================================
712
# Generate Op Definition Files
713
# =====================================
714 715
def GenBuildInputArgsStr(
    op_input_name_list,
716 717 718
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
719 720 721 722
    op_mutable_attribute_name_list,
    op_non_mutable_attribute_name_list,
    op_non_mutable_attribute_build_arg_type_list,
    op_non_mutable_attribute_default_value_list,
723
    for_func_define=True,
724
    mutable_attr_is_input=False,
725 726
):
    '''
727
    Example: ir::Builder &builder, ir::OperationArgument &argument, ir::OpResult x_, phi::DataType dtype=phi::DataType::UNDEFINED, phi::Place place={}
728
    '''
729
    # add inputs
730
    build_args_str = "ir::Builder &builder, ir::OperationArgument &argument"
731 732 733
    if len(op_input_name_list) > 0:
        for input_name in op_input_name_list:
            build_args_str += ", ir::OpResult " + input_name + "_"
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770

    if not mutable_attr_is_input:
        # add attributes
        for attr_idx in range(len(op_attribute_name_list)):
            build_args_str += (
                ", "
                + op_attribute_build_arg_type_list[attr_idx]
                + " "
                + op_attribute_name_list[attr_idx]
            )
            if for_func_define:
                if op_attribute_default_value_list[attr_idx] is not None:
                    default_value = op_attribute_default_value_list[attr_idx]
                    if (
                        op_attribute_build_arg_type_list[attr_idx]
                        != "std::string"
                    ):
                        if default_value[0] == "'" or default_value[0] == '"':
                            default_value = default_value[1:]
                        if default_value[-1] == "'" or default_value[-1] == '"':
                            default_value = default_value[0:-1]
                    build_args_str += "=" + default_value
    else:
        # add mutable attributes as inputs
        if len(op_mutable_attribute_name_list) > 0:
            for mutable_attr in op_mutable_attribute_name_list:
                build_args_str += ", ir::OpResult " + mutable_attr + "_"

        # add non-mutable attributes
        for attr_idx in range(len(op_non_mutable_attribute_name_list)):
            build_args_str += (
                ", "
                + op_non_mutable_attribute_build_arg_type_list[attr_idx]
                + " "
                + op_non_mutable_attribute_name_list[attr_idx]
            )
            if for_func_define:
771
                if (
772 773
                    op_non_mutable_attribute_default_value_list[attr_idx]
                    is not None
774
                ):
775 776 777 778 779 780 781 782 783 784 785 786 787
                    default_value = op_non_mutable_attribute_default_value_list[
                        attr_idx
                    ]
                    if (
                        op_non_mutable_attribute_build_arg_type_list[attr_idx]
                        != "std::string"
                    ):
                        if default_value[0] == "'" or default_value[0] == '"':
                            default_value = default_value[1:]
                        if default_value[-1] == "'" or default_value[-1] == '"':
                            default_value = default_value[0:-1]
                    build_args_str += "=" + default_value

788 789 790
    return build_args_str


791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
mutable_attribute_phi_type_maps = {
    'int': 'phi::DataType::INT32',
    'int64_t': 'phi::DataType::INT64',
    'float': 'phi::DataType::FLOAT32',
    'std::vector<int64_t>': 'phi::DataType::INT64',
    'const std::vector<int64_t>&': 'phi::DataType::INT64',
}


def GenBuildInserFullForMutableAttribute(
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
):
    build_mutable_attribute = ""
    BUILD_INTARRAY_ATTRIBUTE_TEMPLATE = """  // Generate int_array mutable attribute: {attr_name}
  paddle::dialect::FullIntArrayOp full_{attr_name}_op = builder.Build<paddle::dialect::FullIntArrayOp>({attr_name}, {phi_dtype}, phi::CPUPlace());
  ir::OpResult {attr_name}_ = full_{attr_name}_op->GetResultByIndex(0);
    """
    BUILD_SCALAR_ATTRIBUTE_TEMPLATE = """  // Generate scalar mutable attribute: {attr_name}
  paddle::dialect::FullOp full_{attr_name}_op = builder.Build<paddle::dialect::FullOp>(std::vector<int64_t>{{1}}, {attr_name}, {phi_dtype}, phi::CPUPlace());
  ir::OpResult {attr_name}_ = full_{attr_name}_op->GetResultByIndex(0);
    """
    for idx in range(len(op_mutable_attribute_name_list)):
        attr_name = op_mutable_attribute_name_list[idx]
        attr_type = op_mutable_attribute_type_list[idx][0]
        if attr_name in op_attribute_name_list:
            phi_dtype = mutable_attribute_phi_type_maps[
                op_attribute_build_arg_type_list[
                    op_attribute_name_list.index(attr_name)
                ]
            ]
        else:
            phi_dtype = mutable_attribute_phi_type_maps[
                op_mutable_attribute_type_list[idx][1]
            ]
        if attr_type == "paddle::dialect::IntArrayAttribute":
            build_mutable_attribute += BUILD_INTARRAY_ATTRIBUTE_TEMPLATE.format(
                attr_name=attr_name, phi_dtype=phi_dtype
            )
        else:
            build_mutable_attribute += BUILD_SCALAR_ATTRIBUTE_TEMPLATE.format(
                attr_name=attr_name, phi_dtype=phi_dtype
            )
    return build_mutable_attribute


839
def GenBuildInputs(op_input_name_list, op_mutable_attribute_name_list):
840
    BUILD_INPUT_TEMPLATE = """  std::vector<ir::OpResult> argument_inputs = {{{inputs_args}}};
841
  argument.AddOperands(argument_inputs.begin(), argument_inputs.end());
842
"""
843 844 845 846 847 848
    build_input_str = '  VLOG(4) << "Builder construction inputs";\n'
    input_name_list = op_input_name_list + op_mutable_attribute_name_list
    if len(input_name_list) > 0:
        inputs_args_str = ""
        inputs_args_str += "_, ".join(input_name_list) + "_"
        build_input_str += BUILD_INPUT_TEMPLATE.format(
849 850 851 852 853
            inputs_args=inputs_args_str
        )
    return build_input_str


854 855 856
def GenBuildAttributes(
    op_non_mutable_attribute_name_list, op_non_mutable_attribute_type_list
):
857 858
    INTARRAY_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), phi::IntArray({attr}));
"""
859
    SCALAR_STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = TransToIrAttribute({attr}, ir::IrContext::Instance());
860 861 862 863 864 865 866 867 868 869
"""
    STR_TEMPLATE = """  ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), {attr});
"""
    ARRAY_ATTRIBUTE_TEMPLATE = """  std::vector<ir::Attribute> vec_{attr_name};
  for (size_t i = 0; i < static_cast<size_t>({attr_size}); i++) {{
    {create_attribute}
    vec_{attr_name}.push_back(attr_{attr_name});
  }}
  ir::Attribute attr_{attr_name} = ir::ArrayAttribute::get(ir::IrContext::Instance(), vec_{attr_name});
"""
870 871 872 873 874 875
    attr_str = '  VLOG(4) << "Builder construction attributes";\n'
    for idx in range(len(op_non_mutable_attribute_name_list)):
        if "ir::ArrayAttribute<" in op_non_mutable_attribute_type_list[idx]:
            inner_attribute_type = op_non_mutable_attribute_type_list[idx][
                19:-1
            ]
876 877
            if inner_attribute_type == "paddle::dialect::IntArrayAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
878 879 880
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
881
                    create_attribute=INTARRAY_STR_TEMPLATE.format(
882
                        attr_name=op_non_mutable_attribute_name_list[idx],
883
                        op_attribute_type=inner_attribute_type,
884
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
885 886 887 888
                    ),
                )
            elif inner_attribute_type == "paddle::dialect::ScalarAttribute":
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
889 890 891
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
892
                    create_attribute=SCALAR_STR_TEMPLATE.format(
893 894
                        attr_name=op_non_mutable_attribute_name_list[idx],
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
895 896 897 898
                    ),
                )
            else:
                attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format(
899 900 901
                    attr_name=op_non_mutable_attribute_name_list[idx],
                    attr_size=op_non_mutable_attribute_name_list[idx]
                    + ".size()",
902
                    create_attribute=STR_TEMPLATE.format(
903
                        attr_name=op_non_mutable_attribute_name_list[idx],
904
                        op_attribute_type=inner_attribute_type,
905
                        attr=op_non_mutable_attribute_name_list[idx] + "[i]",
906 907 908
                    ),
                )
        elif (
909 910
            op_non_mutable_attribute_type_list[idx]
            == "paddle::dialect::IntArrayAttribute"
911 912
        ):
            attr_str += INTARRAY_STR_TEMPLATE.format(
913 914 915
                attr_name=op_non_mutable_attribute_name_list[idx],
                op_attribute_type=op_non_mutable_attribute_type_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
916 917
            )

918 919 920 921
        elif (
            op_non_mutable_attribute_type_list[idx]
            == "paddle::dialect::ScalarAttribute"
        ):
922
            attr_str += SCALAR_STR_TEMPLATE.format(
923 924
                attr_name=op_non_mutable_attribute_name_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
925 926 927
            )
        else:
            attr_str += STR_TEMPLATE.format(
928 929 930
                attr_name=op_non_mutable_attribute_name_list[idx],
                op_attribute_type=op_non_mutable_attribute_type_list[idx],
                attr=op_non_mutable_attribute_name_list[idx],
931
            )
932
        attr_str += """  argument.AddAttribute("{attr_name}", attr_{attr_name});\n""".format(
933
            attr_name=op_non_mutable_attribute_name_list[idx]
934 935 936 937 938 939 940 941
        )

    return attr_str


def GenBuildOutputs(
    op_input_name_list,
    op_input_type_list,
942 943
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
944 945 946 947
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
948
    mutable_attr_is_input=False,
949
):
950
    build_output_str = '  VLOG(4) << "Builder construction outputs";\n'
951 952 953 954 955 956 957 958 959
    CREATE_INPUT_METATENSOR_TEMPLATE = """
  VLOG(4) << "Builder construction  dense_{name}";
  phi::DenseTensor dense_{name}(std::make_unique<paddle::experimental::DefaultAllocator>(paddle::platform::CPUPlace()).get(),
                                phi::DenseTensorMeta(TransToPhiDataType({name}.dtype()),
                                                     {name}.dims(),
                                                     {name}.data_layout(),
                                                     {name}.lod(),
                                                     {name}.offset()));
  VLOG(4) << "Builder construction  meta_{name}";
960 961
  phi::MetaTensor meta_{name}(&dense_{name});
"""
962
    CREATE_INPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name};
963
  for (size_t i=0; i < static_cast<size_t>({name}.size()); i++) {{
964 965 966 967 968 969 970 971 972
    vec_dense_{name}.push_back(phi::DenseTensor(std::make_unique<paddle::experimental::DefaultAllocator>(paddle::platform::CPUPlace()).get(),
                                                phi::DenseTensorMeta(TransToPhiDataType({name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dtype()),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().dims(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().data_layout(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().lod(),
                                                                     {name}[i].dyn_cast<paddle::dialect::DenseTensorType>().offset())));
  }}
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < vec_dense_{name}.size(); i++) {{
973 974
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
975

976 977 978 979 980
  std::vector<const phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
 """
981

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    CREATE_OUTPUT_METATENSOR_TEMPLATE = """  phi::DenseTensor dense_{name};
  phi::MetaTensor meta_{name}(&dense_{name});
"""
    CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE = """  std::vector<phi::DenseTensor> vec_dense_{name}(({output_size}), phi::DenseTensor());
  std::vector<phi::MetaTensor> vec_meta_{name};
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i]));
  }}
  std::vector<phi::MetaTensor*> meta_{name};
  for (size_t i=0; i < static_cast<size_t>(vec_meta_{name}.size()); i++) {{
    meta_{name}.push_back(&vec_meta_{name}[i]);
  }}
"""
    # Prepar input type
    for idx in range(len(op_input_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_input_type_list[idx]:
            build_output_str += "  ir::VectorType {name} = {name}_.type().dyn_cast<ir::VectorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )
        # is a Tensor
        else:
            build_output_str += "  paddle::dialect::DenseTensorType {name} = {name}_.type().dyn_cast<paddle::dialect::DenseTensorType>(); (void){name};\n".format(
                name=op_input_name_list[idx]
            )

1008
    # Prepare inputs_meta_tensor & attributes for infer meta
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    infer_meta_args = []
    for idx in range(len(op_infer_meta_map['param'])):
        # is input
        if op_infer_meta_map['param'][idx] in op_input_name_list:
            if (
                "meta_" + op_infer_meta_map['param'][idx]
            ) not in infer_meta_args:
                # is a vector<Tensor>
                if (
                    'ir::VectorType'
                    in op_input_type_list[
                        op_input_name_list.index(
                            op_infer_meta_map['param'][idx]
                        )
                    ]
                ):
                    build_output_str += (
                        CREATE_INPUT_VEC_METATENSOR_TEMPLATE.format(
                            name=op_infer_meta_map['param'][idx]
                        )
                    )
                # is a Tensor
                else:
                    build_output_str += CREATE_INPUT_METATENSOR_TEMPLATE.format(
                        name=op_infer_meta_map['param'][idx]
                    )

            infer_meta_args.append("meta_" + op_infer_meta_map['param'][idx])
        # is attribute
        else:
            infer_meta_args.append(op_infer_meta_map['param'][idx])

1041
    # Prepare outputs_meta_tensor for infer meta
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
            infer_meta_args.append(f"meta_{op_output_name_list[idx]}")
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_METATENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )
            infer_meta_args.append(f"&meta_{op_output_name_list[idx]}")

    # Execute infer meta function
    CREATE_INFER_META_FUNC_TEMPLATE = """
  phi::{func}({args});
"""
    build_output_str += CREATE_INFER_META_FUNC_TEMPLATE.format(
        func=op_infer_meta_map['func'], args=", ".join(infer_meta_args)
    )

    # use dense_{name} or vec_dense_{name} to create Outputs type
    build_output_str += "\n  std::vector<ir::Type> argument_outputs;"

    CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE = """
  ir::Type {name}_dense_tensor_type = paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(dense_{name}.dtype()), dense_{name}.dims(), dense_{name}.layout(), dense_{name}.lod(), dense_{name}.offset());
  argument_outputs.push_back({name}_dense_tensor_type);
"""
    CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE = """
  std::vector<ir::Type> {name}_types;
  for (size_t i=0; i < static_cast<size_t>({output_size}); i++) {{
    {name}_types.push_back(paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(vec_dense_{name}[i].dtype()), vec_dense_{name}[i].dims(), vec_dense_{name}[i].layout(), vec_dense_{name}[i].lod(), vec_dense_{name}[i].offset()));
  }}
  ir::Type {name}_vector_type = ir::VectorType::get(ir::IrContext::Instance(), {name}_types);
  argument_outputs.push_back({name}_vector_type);
"""
    for idx in range(len(op_output_name_list)):
        # is a vector<Tensor>
        if 'ir::VectorType' in op_output_type_list[idx]:
            build_output_str += CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx],
                output_size=op_output_size_list[idx],
            )
        # is a Tensor
        else:
            build_output_str += CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE.format(
                name=op_output_name_list[idx]
            )

1093
    build_output_str += "  argument.AddTypes(argument_outputs.begin(), argument_outputs.end());\n"
1094 1095 1096 1097

    return build_output_str


1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
def GenBuild(
    op_class_name,
    op_input_name_list,
    op_input_type_list,
    op_attribute_name_list,
    op_attribute_build_arg_type_list,
    op_attribute_default_value_list,
    op_mutable_attribute_name_list,
    op_mutable_attribute_type_list,
    op_non_mutable_attribute_name_list,
    op_non_mutable_attribute_type_list,
    op_non_mutable_attribute_build_arg_type_list,
    op_non_mutable_attribute_default_value_list,
    op_output_name_list,
    op_output_type_list,
    op_output_size_list,
    op_infer_meta_map,
    muta_attr_is_input=False,
):
    build_args_for_declare = ""
    build_func = ""

    build_args_for_declare = GenBuildInputArgsStr(
        op_input_name_list,
        op_attribute_name_list,
        op_attribute_build_arg_type_list,
        op_attribute_default_value_list,
        op_mutable_attribute_name_list,
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_build_arg_type_list,
        op_non_mutable_attribute_default_value_list,
        True,
        muta_attr_is_input,
    )

    build_args_for_define = GenBuildInputArgsStr(
        op_input_name_list,
        op_attribute_name_list,
        op_attribute_build_arg_type_list,
        op_attribute_default_value_list,
        op_mutable_attribute_name_list,
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_build_arg_type_list,
        op_non_mutable_attribute_default_value_list,
        False,
        muta_attr_is_input,
    )
    inset_full_for_mutable_attributes_str = ""
    if not muta_attr_is_input:
        inset_full_for_mutable_attributes_str = (
            GenBuildInserFullForMutableAttribute(
                op_attribute_name_list,
                op_attribute_build_arg_type_list,
                op_mutable_attribute_name_list,
                op_mutable_attribute_type_list,
            )
        )

    build_inputs_str = GenBuildInputs(
        op_input_name_list, op_mutable_attribute_name_list
    )
    build_attributes_str = GenBuildAttributes(
        op_non_mutable_attribute_name_list,
        op_non_mutable_attribute_type_list,
    )
    build_outputs_str = GenBuildOutputs(
        op_input_name_list,
        op_input_type_list,
        op_mutable_attribute_name_list,
        op_mutable_attribute_type_list,
        op_output_name_list,
        op_output_type_list,
        op_output_size_list,
        op_infer_meta_map,
        False,
    )

    build_func = OP_BUILD_TEMPLATE.format(
        op_name=op_class_name,
        build_args=build_args_for_define,
        build_mutable_attributes=inset_full_for_mutable_attributes_str,
        build_inputs=build_inputs_str,
        build_attributes=build_attributes_str,
        build_outputs=build_outputs_str,
    )

    return (build_args_for_declare, build_func)


1187 1188
def OpGenerator(
    op_yaml_files,
1189
    op_compat_yaml_file,
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    namespaces,
    dialect_name,
    op_def_h_file,
    op_def_cc_file,
):
    # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp
    if os.path.exists(op_def_h_file):
        os.remove(op_def_h_file)
    if os.path.exists(op_def_cc_file):
        os.remove(op_def_cc_file)

    # (2) Prepare: Get all op item in all op_yaml_files
1202 1203
    op_compat_parser = OpCompatParser(op_compat_yaml_file)

1204 1205 1206 1207 1208 1209 1210
    op_yaml_items = []
    for yaml_file in op_yaml_files:
        with open(yaml_file, "r") as f:
            ops = yaml.safe_load(f)
            op_yaml_items = op_yaml_items + ops
    op_info_items = []
    for op in op_yaml_items:
1211 1212 1213
        op_info_items.append(
            OpInfoParser(op, op_compat_parser.get_compat(op['name']))
        )
1214 1215 1216 1217 1218 1219

    # (3) CodeGen: Traverse op_info_items and generate
    ops_name_list = []  # all op class name store in this list
    ops_declare_list = []  # all op class declare store in this list
    ops_defined_list = []  # all op class defined store in this list
    for op_info in op_info_items:
1220
        # get op inputs info
1221 1222 1223
        op_input_name_list = op_info.input_name_list
        op_input_type_list = op_info.input_type_list
        op_input_optional_list = op_info.input_optional_list
1224
        op_input_no_need_buffer_list = op_info.input_no_need_buffer_list
1225
        # get op outputs info
1226 1227
        op_output_name_list = op_info.output_name_list
        op_output_type_list = op_info.output_type_list
1228
        op_output_size_list = op_info.output_size_list
1229
        op_output_optional_list = op_info.output_optional_list
1230
        op_output_intermediate_list = op_info.output_intermediate_list
1231 1232 1233 1234
        # get op mutable attribute
        op_mutable_attribute_name_list = op_info.mutable_attribute_name_list
        op_mutable_attribute_type_list = op_info.mutable_attribute_type_list
        # get op attribute
1235 1236
        op_attribute_name_list = op_info.attribute_name_list
        op_attribute_type_list = op_info.attribute_type_list
1237
        op_attribute_data_type_list = op_info.attribute_data_type_list
1238 1239
        op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list
        op_attribute_default_value_list = op_info.attribute_default_value_list
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        op_non_mutable_attribute_name_list = (
            op_info.non_mutable_attribute_name_list
        )
        op_non_mutable_attribute_type_list = (
            op_info.non_mutable_attribute_type_list
        )
        op_non_mutable_attribute_data_type_list = (
            op_info.non_mutable_attribute_data_type_list
        )
        op_non_mutable_attribute_build_arg_type_list = (
            op_info.non_mutable_attribute_build_arg_type_list
        )
        op_non_mutable_attribute_default_value_list = (
            op_info.non_mutable_attribute_default_value_list
        )

1256
        # others
1257 1258
        op_infer_meta_map = op_info.infer_meta_map
        op_kernel_map = op_info.kernel_map
1259
        op_interfaces = ["OpYamlInfoInterface"]
1260 1261
        op_traits = []

H
hong 已提交
1262 1263 1264 1265 1266 1267 1268
        exclusive_interface_str = ""
        if op_info.infer_shape_func:
            op_interfaces += ["InferShapeInterface"]
            exclusive_interface_str += (
                "  static void InferShape( phi::InferMetaContext *infer_meta );"
            )

1269 1270 1271 1272 1273
        # If op has inplace info, we will generate inplace op and non-inplace op.
        for op_name in op_info.op_phi_name:
            op_class_name = to_pascal_case(op_name) + "Op"
            op_dialect_name = dialect_name + "." + op_name

1274 1275 1276
            # =================================== #
            #    gen interface/trait list str     #
            # =================================== #
1277 1278 1279 1280 1281 1282 1283
            op_interfaces_str = ""
            if len(op_interfaces) > 0:
                op_interfaces_str = "," + ",".join(op_interfaces)
            op_traits_str = ""
            if len(op_traits) > 0:
                op_traits_str = "," + ",".join(op_traits)

1284 1285 1286
            # =================================== #
            #  gen get input/output methods str   #
            # =================================== #
1287 1288 1289 1290 1291 1292
            op_get_inputs_outputs_str = ""
            for idx in range(len(op_input_name_list)):
                op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                    input_name=op_input_name_list[idx],
                    input_index=idx,
                )
1293 1294 1295 1296 1297
            for idx in range(len(op_mutable_attribute_name_list)):
                op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format(
                    input_name=op_mutable_attribute_name_list[idx],
                    input_index=idx + len(op_input_name_list),
                )
1298 1299 1300 1301 1302
            for idx in range(len(op_output_name_list)):
                op_get_inputs_outputs_str += OP_GET_OUTPUT_TEMPLATE.format(
                    output_name=op_output_name_list[idx],
                    output_index=idx,
                )
1303

1304 1305 1306 1307 1308 1309 1310 1311
            # =================================== #
            #         gen Build methods str       #
            # =================================== #
            build_args_with_muta_attr_not_input_for_declare = ""
            build_func_with_muta_attr_not_input = ""
            build_mutable_attr_is_input = ""
            build_func_with_muta_attr_is_input = ""

1312
            if op_infer_meta_map is not None:
1313 1314 1315 1316 1317
                (
                    build_args_with_muta_attr_not_input_for_declare,
                    build_func_with_muta_attr_not_input,
                ) = GenBuild(
                    op_class_name,
1318
                    op_input_name_list,
1319 1320 1321 1322
                    op_input_type_list,
                    op_attribute_name_list,
                    op_attribute_build_arg_type_list,
                    op_attribute_default_value_list,
1323
                    op_mutable_attribute_name_list,
1324
                    op_mutable_attribute_type_list,
1325
                    op_non_mutable_attribute_name_list,
1326
                    op_non_mutable_attribute_type_list,
1327 1328
                    op_non_mutable_attribute_build_arg_type_list,
                    op_non_mutable_attribute_default_value_list,
1329 1330 1331 1332
                    op_output_name_list,
                    op_output_type_list,
                    op_output_size_list,
                    op_infer_meta_map,
1333
                    muta_attr_is_input=False,
1334
                )
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
                op_infer_meta_args = op_infer_meta_map['param']
                if (len(op_mutable_attribute_name_list) > 0) and (
                    len(
                        list(
                            set(op_infer_meta_args)
                            & set(op_mutable_attribute_name_list)
                        )
                    )
                    == 0
                ):
                    (
                        build_args_with_muta_attr_is_input_for_declare,
                        build_func_with_muta_attr_is_input,
                    ) = GenBuild(
                        op_class_name,
                        op_input_name_list,
                        op_input_type_list,
                        op_attribute_name_list,
                        op_attribute_build_arg_type_list,
                        op_attribute_default_value_list,
                        op_mutable_attribute_name_list,
                        op_mutable_attribute_type_list,
                        op_non_mutable_attribute_name_list,
                        op_non_mutable_attribute_type_list,
                        op_non_mutable_attribute_build_arg_type_list,
                        op_non_mutable_attribute_default_value_list,
                        op_output_name_list,
                        op_output_type_list,
                        op_output_size_list,
                        op_infer_meta_map,
                        muta_attr_is_input=True,
                    )

                    build_mutable_attr_is_input = "static void Build({build_args});".format(
                        build_args=build_args_with_muta_attr_is_input_for_declare
                    )
1371

1372
            # gen op_declare_str/op_defined_str
1373
            if len(op_non_mutable_attribute_name_list) == 0:
1374 1375 1376 1377 1378 1379 1380
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_0_attribute_declare_str,
                    attribute_num=0,
1381 1382
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
1383
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1384
                    exclusive_interface=exclusive_interface_str,
1385 1386 1387 1388 1389 1390 1391 1392 1393
                )
                op_defined_str = ""
            else:
                op_declare_str = OP_DECLARE_TEMPLATE.format(
                    op_name=op_class_name,
                    dialect_op_name=op_dialect_name,
                    interfaces=op_interfaces_str,
                    traits=op_traits_str,
                    attribute_declare=op_n_attribute_declare_str.format(
1394
                        attribute_num=len(op_non_mutable_attribute_name_list)
1395
                    ),
1396
                    attribute_num=len(op_non_mutable_attribute_name_list),
1397 1398
                    build_args=build_args_with_muta_attr_not_input_for_declare,
                    build_mutable_attr_is_input=build_mutable_attr_is_input,
1399
                    get_inputs_and_outputs=op_get_inputs_outputs_str,
H
hong 已提交
1400
                    exclusive_interface=exclusive_interface_str,
1401 1402
                )
                attribute_names_str = (
1403
                    '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"'
1404 1405 1406
                )
                op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format(
                    op_name=op_class_name,
1407
                    attribute_num=len(op_non_mutable_attribute_name_list),
1408 1409
                    attribute_names=attribute_names_str,
                )
1410

1411 1412 1413
            # =================================== #
            #         gen GetOpInfo func str      #
            # =================================== #
1414
            # generate get op info funciton: inputs
1415
            input_info_list = []
1416 1417 1418 1419 1420 1421 1422 1423
            for idx in range(len(op_input_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_input_name_list[idx],
                        typename=op_input_type_list[idx],
                        optional=op_input_optional_list[idx],
                        no_need_buffer=op_input_no_need_buffer_list[idx],
                        is_mutable_attribute='false',
1424
                    )
1425 1426 1427 1428 1429 1430 1431 1432 1433
                )
            for idx in range(len(op_mutable_attribute_name_list)):
                input_info_list.append(
                    CONSTRUCT_INPUT_INFO_TEMPLATE.format(
                        name=op_mutable_attribute_name_list[idx],
                        typename=op_mutable_attribute_type_list[idx][0],
                        optional='false',
                        no_need_buffer='false',
                        is_mutable_attribute='true',
1434
                    )
1435 1436 1437 1438 1439
                )
            if len(input_info_list) > 0:
                inputs_info_str = ", ".join(input_info_list)
            else:
                inputs_info_str = ""
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
            # generate get op info funciton: outputs
            outputs_info_str = ""
            if len(op_output_name_list) > 0:
                output_info_list = []
                for idx in range(len(op_output_name_list)):
                    output_info_list.append(
                        CONSTRUCT_OUTPUT_INFO_TEMPLATE.format(
                            name=op_output_name_list[idx],
                            typename=op_output_type_list[idx],
                            optional=op_output_optional_list[idx],
                            intermediate=op_output_intermediate_list[idx],
                        )
1452
                    )
1453 1454 1455
                outputs_info_str = ", ".join(output_info_list)
            # generate get op info funciton: attributes
            attribute_info_str = ""
1456
            if len(op_non_mutable_attribute_name_list) > 0:
1457
                attribute_info_list = []
1458
                for idx in range(len(op_non_mutable_attribute_name_list)):
1459 1460
                    attribute_info_list.append(
                        CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format(
1461 1462 1463 1464 1465
                            name=op_non_mutable_attribute_name_list[idx],
                            typename=op_non_mutable_attribute_type_list[idx],
                            data_type=op_non_mutable_attribute_data_type_list[
                                idx
                            ],
1466
                        )
1467
                    )
1468
                attribute_info_str = ", ".join(attribute_info_list)
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
            # generate runtiem info
            infer_meta_func_str = ""
            infer_meta_param_str = ""
            if op_infer_meta_map is not None:
                infer_meta_func_str = op_infer_meta_map['func']
                infer_meta_param_str = '", "'.join(op_infer_meta_map['param'])
            kernel_func_str = ""
            kernel_param_str = ""
            if op_kernel_map is not None:
                kernel_func_str = '", "'.join(op_kernel_map['func'])
                kernel_param_str = '", "'.join(op_kernel_map['param'])

1481 1482 1483 1484 1485
            op_info_func_str = OP_INFO_TEMPLATE.format(
                op_name=op_class_name,
                inputs=inputs_info_str,
                attributes=attribute_info_str,
                outputs=outputs_info_str,
1486 1487 1488 1489
                infer_meta_func=infer_meta_func_str,
                infer_meta_param=infer_meta_param_str,
                kernel_func=kernel_func_str,
                kernel_param=kernel_param_str,
1490
            )
1491

1492 1493 1494
            # =================================== #
            #          gen Verify func str        #
            # =================================== #
1495
            # generate op verify function: inputs_type_check_str
1496 1497 1498
            if (
                len(op_input_type_list) + len(op_mutable_attribute_name_list)
            ) == 0:
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
                inputs_type_check_str = (
                    "// Inputs num is 0, not need to check inputs type."
                )
            else:
                inputs_type_check_str = ""
            for idx in range(len(op_input_type_list)):
                input_type = op_input_type_list[idx]
                is_optional = op_input_optional_list[idx]
                is_vector = False
                if input_type.startswith("ir::VectorType<"):
                    is_vector = True
                    input_type = input_type[15:-1]
                check_str = ""
                if is_optional == "true":
                    if is_vector:
                        check_str = (
                            INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                                index=idx, standard=input_type
                            )
                        )
                    else:
                        check_str = INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                else:
                    if is_vector:
                        check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                    else:
                        check_str = INPUT_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=input_type
                        )
                inputs_type_check_str += check_str

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
            for idx in range(len(op_mutable_attribute_name_list)):
                mutable_attribute_type = op_mutable_attribute_type_list[idx][0]
                check_str = ""
                if mutable_attribute_type == "paddle::dialect::ScalarAttribute":
                    check_str = INPUT_TYPE_CHECK_TEMPLATE.format(
                        index=idx + len(op_input_type_list),
                        standard="paddle::dialect::DenseTensorType",
                    )
                else:
                    check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                        index=idx + len(op_input_type_list),
                        standard="paddle::dialect::DenseTensorType",
                    )
                inputs_type_check_str += check_str
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
            # generate op verify function: outputs_type_check_str
            if len(op_output_type_list) == 0:
                outputs_type_check_str = (
                    "// Outputs num is 0, not need to check outputs type."
                )
            else:
                outputs_type_check_str = ""
            for idx in range(len(op_output_type_list)):
                output_type = op_output_type_list[idx]
                is_optional = op_output_optional_list[idx]
                is_vector = False
                if output_type.startswith("ir::VectorType<"):
                    is_vector = True
                    output_type = output_type[15:-1]
                check_str = ""
                if is_optional == "true":
                    if is_vector:
                        check_str = (
                            OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format(
                                index=idx, standard=output_type
                            )
                        )
                    else:
                        check_str = OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format(
1572 1573 1574
                            index=idx, standard=output_type
                        )
                else:
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
                    if is_vector:
                        check_str = OUTPUT_VECTORTYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                    else:
                        check_str = OUTPUT_TYPE_CHECK_TEMPLATE.format(
                            index=idx, standard=output_type
                        )
                outputs_type_check_str += check_str
            # generate op verify function: attributes_check_str
1585
            if len(op_non_mutable_attribute_name_list) == 0:
1586 1587 1588
                attributes_check_str = (
                    "// Attributes num is 0, not need to check attributes type."
                )
1589
            else:
1590
                attributes_check_str = ""
1591 1592 1593
            for idx in range(len(op_non_mutable_attribute_name_list)):
                attribute_name = op_non_mutable_attribute_name_list[idx]
                attribute_type = op_non_mutable_attribute_type_list[idx]
1594 1595 1596 1597 1598 1599 1600
                if attribute_type.startswith("ir::ArrayAttribute<"):
                    attribute_type = attribute_type[19:-1]
                    attributes_check_str += (
                        ATTRIBUTE_VECTOR_CHECK_TEMPLATE.format(
                            attribute_name=attribute_name,
                            standard=attribute_type,
                        )
1601 1602
                    )
                else:
1603 1604
                    attributes_check_str += ATTRIBUTE_CHECK_TEMPLATE.format(
                        attribute_name=attribute_name, standard=attribute_type
1605
                    )
1606
            # generate op verify function
1607 1608 1609 1610 1611 1612 1613
            if "GradOp" in op_class_name or "Grad_Op" in op_class_name:
                op_verify_str = GRAD_OP_VERIFY_TEMPLATE.format(
                    op_name=op_class_name,
                )
            else:
                op_verify_str = OP_VERIFY_TEMPLATE.format(
                    op_name=op_class_name,
1614 1615
                    inputs_size=len(op_input_type_list)
                    + len(op_mutable_attribute_type_list),
1616 1617 1618 1619 1620
                    outputs_size=len(op_output_type_list),
                    inputs_type_check=inputs_type_check_str,
                    outputs_type_check=outputs_type_check_str,
                    attributes_check=attributes_check_str,
                )
1621

H
hong 已提交
1622 1623 1624 1625 1626 1627 1628
            op_infer_shape_str = ""
            if op_info.infer_shape_func:
                op_infer_shape_str = OP_INFER_SHAPE_TEMPLATE.format(
                    op_name=op_class_name,
                    infer_meta_func=op_info.infer_shape_func,
                )

1629 1630 1631 1632
            ops_name_list.append(op_class_name)
            ops_declare_list.append(op_declare_str)
            ops_defined_list.append(op_defined_str)
            ops_defined_list.append(op_info_func_str)
1633 1634 1635
            ops_defined_list.append(build_func_with_muta_attr_not_input)
            if len(op_mutable_attribute_name_list) > 0:
                ops_defined_list.append(build_func_with_muta_attr_is_input)
1636
            ops_defined_list.append(op_verify_str)
H
hong 已提交
1637
            ops_defined_list.append(op_infer_shape_str)
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

    # (4) Generate head file str
    op_namespaces_prev = ""
    for name in namespaces:
        op_namespaces_prev += name + "::"
    ops_name_with_namespace_list = []
    for name in ops_name_list:
        ops_name_with_namespace_list.append(op_namespaces_prev + name)
    op_list_str = GET_OP_LIST_TEMPALTE.format(
        ", ".join(ops_name_with_namespace_list)
    )  # Add GET_OP_LIST
    head_file_str = ""
    head_file_str += "".join(ops_declare_list)  # Add op class
    for name in reversed(namespaces):
        head_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=head_file_str
        )  # Add namespaces
    head_file_str = H_FILE_TEMPLATE.format(
        op_declare=op_list_str, input=head_file_str
    )  # Add head

    # (5) Generate source file str
    source_file_str = "".join(ops_defined_list)  # Add op define
    for name in reversed(namespaces):
        source_file_str = NAMESPACE_GARD_TEMPLATE.format(
            namespace=name, input=source_file_str
        )  # Add namespaces
    source_file_str = CC_FILE_TEMPLATE.format(
1666
        h_file=op_def_h_file[:-4], input=source_file_str
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
    )  # Add head

    # (5) Generate pd_op.h.tmp, pd_op.cc.tmp
    with open(op_def_h_file, 'a') as f:
        f.write(head_file_str)
    with open(op_def_cc_file, 'a') as f:
        f.write(source_file_str)


# =====================================
# Script parameter parsing
# =====================================
def ParseArguments():
    parser = argparse.ArgumentParser(
        description='Generate Dialect OP Definition Files By Yaml'
    )
    parser.add_argument('--op_yaml_files', type=str)
    parser.add_argument('--op_compat_yaml_file', type=str)
    parser.add_argument('--namespaces', type=str)
    parser.add_argument('--dialect_name', type=str)
    parser.add_argument('--op_def_h_file', type=str)
    parser.add_argument('--op_def_cc_file', type=str)
    return parser.parse_args()


# =====================================
# Main
# =====================================
if __name__ == "__main__":
    # parse arguments
    args = ParseArguments()
    op_yaml_files = args.op_yaml_files.split(",")
    op_compat_yaml_file = args.op_compat_yaml_file
    namespaces = []
    if args.namespaces is not None:
        namespaces = args.namespaces.split(",")
    dialect_name = args.dialect_name
    op_def_h_file = args.op_def_h_file
    op_def_cc_file = args.op_def_cc_file

    # auto code generate
    OpGenerator(
        op_yaml_files,
1710
        op_compat_yaml_file,
1711 1712 1713 1714 1715
        namespaces,
        dialect_name,
        op_def_h_file,
        op_def_cc_file,
    )