test_resnet_pure_fp16.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import unittest

import numpy as np
19
from test_resnet import SEED, ResNet, optimizer_setting
20 21

import paddle
22
from paddle import fluid
23
from paddle.fluid import core
24 25 26 27 28 29 30 31 32 33 34 35

# NOTE: Reduce batch_size from 8 to 2 to avoid unittest timeout.
batch_size = 2
epoch_num = 1


if fluid.is_compiled_with_cuda():
    fluid.set_flags({'FLAGS_cudnn_deterministic': True})


def train(to_static, build_strategy=None):
    """
36
    Tests model decorated by `dygraph_to_static_output` in static graph mode. For users, the model is defined in dygraph mode and trained in static graph mode.
37 38 39 40 41 42 43 44 45 46 47
    """
    np.random.seed(SEED)
    paddle.seed(SEED)
    paddle.framework.random._manual_program_seed(SEED)

    resnet = ResNet()
    if to_static:
        resnet = paddle.jit.to_static(resnet, build_strategy=build_strategy)
    optimizer = optimizer_setting(parameter_list=resnet.parameters())
    scaler = paddle.amp.GradScaler(init_loss_scaling=1024)

48 49 50
    resnet, optimizer = paddle.amp.decorate(
        models=resnet, optimizers=optimizer, level='O2', save_dtype='float32'
    )
51 52 53 54 55 56 57 58 59 60 61

    for epoch in range(epoch_num):
        loss_data = []
        total_loss = 0.0
        total_acc1 = 0.0
        total_acc5 = 0.0
        total_sample = 0

        for batch_id in range(100):
            start_time = time.time()
            img = paddle.to_tensor(
62 63
                np.random.random([batch_size, 3, 224, 224]).astype('float32')
            )
64
            label = paddle.to_tensor(
65 66
                np.random.randint(0, 100, [batch_size, 1], dtype='int64')
            )
67 68 69
            img.stop_gradient = True
            label.stop_gradient = True

70 71 72 73 74 75
            with paddle.amp.auto_cast(
                enable=True,
                custom_white_list=None,
                custom_black_list=None,
                level='O2',
            ):
76
                pred = resnet(img)
77 78 79
                loss = paddle.nn.functional.cross_entropy(
                    input=pred, label=label, reduction='none', use_softmax=False
                )
80
            avg_loss = paddle.mean(x=pred)
81 82
            acc_top1 = paddle.static.accuracy(input=pred, label=label, k=1)
            acc_top5 = paddle.static.accuracy(input=pred, label=label, k=5)
83 84 85 86 87 88

            scaled = scaler.scale(avg_loss)
            scaled.backward()
            scaler.minimize(optimizer, scaled)
            resnet.clear_gradients()

89
            loss_data.append(float(avg_loss))
90 91 92 93 94 95 96
            total_loss += avg_loss
            total_acc1 += acc_top1
            total_acc5 += acc_top5
            total_sample += 1

            end_time = time.time()
            if batch_id % 2 == 0:
97 98 99 100 101 102 103 104 105 106 107
                print(
                    "epoch %d | batch step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, time %f"
                    % (
                        epoch,
                        batch_id,
                        total_loss.numpy() / total_sample,
                        total_acc1.numpy() / total_sample,
                        total_acc5.numpy() / total_sample,
                        end_time - start_time,
                    )
                )
108 109 110 111 112 113 114 115
            if batch_id == 10:
                break

    return loss_data


class TestResnet(unittest.TestCase):
    def train(self, to_static):
R
Ryan 已提交
116
        paddle.jit.enable_to_static(to_static)
117 118 119 120 121
        build_strategy = paddle.static.BuildStrategy()
        # Why set `build_strategy.enable_inplace = False` here?
        # Because we find that this PASS strategy of PE makes dy2st training loss unstable.
        build_strategy.enable_inplace = False
        return train(to_static, build_strategy)
122 123 124 125 126 127

    def test_resnet(self):
        if fluid.is_compiled_with_cuda():
            static_loss = self.train(to_static=True)
            dygraph_loss = self.train(to_static=False)
            # NOTE: In pure fp16 training, loss is not stable, so we enlarge atol here.
128 129 130 131 132 133
            np.testing.assert_allclose(
                static_loss,
                dygraph_loss,
                rtol=1e-05,
                atol=0.001,
                err_msg='static_loss: {} \n dygraph_loss: {}'.format(
134 135 136
                    static_loss, dygraph_loss
                ),
            )
137

138 139
    def test_resnet_composite(self):
        if fluid.is_compiled_with_cuda():
140
            core._set_prim_backward_enabled(True)
141
            static_loss = self.train(to_static=True)
142
            core._set_prim_backward_enabled(False)
143 144 145 146 147 148 149 150 151 152 153 154
            dygraph_loss = self.train(to_static=False)
            # NOTE: In pure fp16 training, loss is not stable, so we enlarge atol here.
            np.testing.assert_allclose(
                static_loss,
                dygraph_loss,
                rtol=1e-05,
                atol=0.001,
                err_msg='static_loss: {} \n dygraph_loss: {}'.format(
                    static_loss, dygraph_loss
                ),
            )

155 156

if __name__ == '__main__':
157
    unittest.main()