InterpolationLayer.cpp 3.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/Matrix.h"
Y
Yu Yang 已提交
17
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25 26 27
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * A layer for linear interpolation with two inputs,
 * which is used in NEURAL TURING MACHINE.
 * \f[
 *   y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]
 * \f]
28 29
 * where \f$x_1\f$ and \f$x_2\f$ are two (batchSize x dataDim) inputs,
 * \f$w\f$ is (batchSize x 1) weight vector,
Z
zhangjinchao01 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 * and \f$y\f$ is (batchSize x dataDim) output.
 *
 * The config file api is interpolation_layer.
 */

class InterpolationLayer : public Layer {
protected:
  /// weightLast = 1 - weight
  MatrixPtr weightLast_;
  MatrixPtr tmpMatrix;

public:
  explicit InterpolationLayer(const LayerConfig& config) : Layer(config) {}

  ~InterpolationLayer() {}

Y
Yu Yang 已提交
46 47
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;
Z
zhangjinchao01 已提交
48

Y
Yu Yang 已提交
49 50
  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback = nullptr) override;
Z
zhangjinchao01 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

REGISTER_LAYER(interpolation, InterpolationLayer);

bool InterpolationLayer::init(const LayerMap& layerMap,
                              const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  CHECK_EQ(3U, inputLayers_.size());

  return true;
}

void InterpolationLayer::forward(PassType passType) {
  Layer::forward(passType);

  MatrixPtr weightV = getInputValue(0);
  MatrixPtr inV1 = getInputValue(1);
  MatrixPtr inV2 = getInputValue(2);

  size_t batchSize = inV1->getHeight();
  size_t dataDim = inV1->getWidth();

  CHECK_EQ(dataDim, getSize());
  CHECK_EQ(dataDim, inV2->getWidth());
  CHECK_EQ(batchSize, inV1->getHeight());
  CHECK_EQ(batchSize, inV2->getHeight());

  {
    REGISTER_TIMER_INFO("FwResetTimer", getName().c_str());
    resetOutput(batchSize, dataDim);
  }

  MatrixPtr outV = getOutputValue();

  Matrix::resizeOrCreate(weightLast_, batchSize, 1, false, useGpu_);
  weightLast_->one();
  weightLast_->sub(*weightV);

  REGISTER_TIMER_INFO("FwInterpTimer", getName().c_str());
  // outV = inV1 * weight + inV2 * weightLast
  outV->addRowScale(0, *inV1, *weightV);
  outV->addRowScale(0, *inV2, *weightLast_);
}

void InterpolationLayer::backward(const UpdateCallback& callback) {
  MatrixPtr outG = getOutputGrad();
  MatrixPtr weightV = getInputValue(0);
  MatrixPtr inV1 = getInputValue(1);
  MatrixPtr inV2 = getInputValue(2);
  MatrixPtr inG0 = getInputGrad(0);
  MatrixPtr inG1 = getInputGrad(1);
  MatrixPtr inG2 = getInputGrad(2);

  size_t batchSize = inV1->getHeight();
  size_t dataDim = inV1->getWidth();

  REGISTER_TIMER_INFO("BwInterpTimer", getName().c_str());

  if (inG0) {
    Matrix::resizeOrCreate(tmpMatrix, batchSize, dataDim, false, useGpu_);

    // inG0 += outG .* (inV1 - inV2)
    tmpMatrix->sub(*inV1, *inV2);
    inG0->rowDotMul(0, *outG, *tmpMatrix);
  }

  if (inG1) {
    // inG1 += outG * weight
    inG1->addRowScale(0, *outG, *weightV);
  }

  if (inG2) {
    // inG2 += outG * weightLast
    inG2->addRowScale(0, *outG, *weightLast_);
  }
}

}  // namespace paddle