c_allreduce_op.h 13.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17

#include <string>
18 19 20 21

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
22 23
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
24
#include "paddle/fluid/operators/npu_op_runner.h"
25

26
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
27
    defined(PADDLE_WITH_ASCEND_CL) || defined(PADDLE_WITH_XPU_BKCL)
28
#include "paddle/fluid/platform/collective_helper.h"
29 30 31
#endif

#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
32 33 34
#include "paddle/fluid/platform/nccl_helper.h"
#endif

35 36 37 38
#if defined(PADDLE_WITH_XPU_BKCL)
#include "paddle/fluid/platform/bkcl_helper.h"
#endif

39 40 41 42 43
#if defined(PADDLE_WITH_GLOO)
#include <gloo/allreduce.h>
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#endif

44 45 46 47
#if defined(PADDLE_WITH_ASCEND_CL)
#include "paddle/fluid/platform/hccl_helper.h"
#endif

48 49 50
namespace paddle {
namespace operators {

51 52 53 54 55 56 57 58 59 60 61 62 63
enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };

class CAllReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
64 65
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
66 67 68 69 70 71 72
  }
};

template <ReduceType red_type, typename T>
class CAllReduceOpCPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
#if defined(PADDLE_WITH_GLOO)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    int64_t send_numel = in->numel();
    const T* send_buff = in->data<T>();
    T* recv_buff = out->mutable_data<T>(in->dims(), place);
    auto gloo = paddle::framework::GlooWrapper::GetInstance();
    PADDLE_ENFORCE_EQ(
        gloo->IsInitialized(), true,
        platform::errors::PreconditionNotMet(
            "You must initialize the gloo environment first to use it."));
    gloo::AllreduceOptions opts(gloo->GetContext());
    opts.setInput(const_cast<T*>(send_buff), send_numel);
    opts.setOutput(recv_buff, send_numel);
    switch (red_type) {
      case kRedSum:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::sum<T>));
        break;
      case kRedMax:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::max<T>));
        break;
      case kRedMin:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::min<T>));
        break;
      case kRedProd:
        opts.setReduceFunction(
            static_cast<void (*)(void*, const void*, const void*, size_t)>(
                &gloo::product<T>));
        break;
      default:
        PADDLE_ENFORCE_EQ(true, false,
                          platform::errors::InvalidArgument(
                              "Invalid reduce type: %d.", red_type));
    }
    gloo::allreduce(opts);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "PaddlePaddle should compile with GLOO by setting WITH_GLOO=ON"));
#endif
120 121 122
  }
};

123 124 125
#if defined(PADDLE_WITH_ASCEND_CL)
// return true if found_inf_or_nan or return false;
template <typename T>
L
Leo Chen 已提交
126 127
bool ContainsNan(const framework::ExecutionContext& exe_ctx, aclrtStream stream,
                 const paddle::framework::Tensor* in) {
128 129 130 131
  auto& dev_ctx =
      exe_ctx.template device_context<paddle::platform::NPUDeviceContext>();
  using Tensor = paddle::framework::Tensor;
  Tensor out(in->type());
L
Leo Chen 已提交
132 133 134 135 136 137 138

  Tensor mean(in->type());
  mean.Resize({1});
  mean.mutable_data<T>(dev_ctx.GetPlace());
  std::vector<int> axes;
  for (int i = 0; i < in->dims().size(); ++i) {
    axes.push_back(i);
139
  }
L
Leo Chen 已提交
140 141 142 143 144
  const auto& runner_mean = NpuOpRunner("ReduceMeanD", {*in}, {mean},
                                        {{"axes", axes}, {"keep_dims", false}});

  std::vector<T> vec;
  TensorToVector(mean, exe_ctx.device_context(), &vec);
145

L
Leo Chen 已提交
146 147 148 149
  if (std::isnan(static_cast<float>(vec[0]))) {
    return true;
  }
  return false;
150 151 152
}
#endif

153 154 155 156 157
template <ReduceType red_type, typename T>
class CAllReduceOpASCENDKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_ASCEND_CL)
158 159
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");
160 161 162 163 164
    auto place = ctx.GetPlace();
    HcclDataType dtype = platform::ToHCCLDataType(in->type());
    int64_t numel = in->numel();

    void* sendbuff = reinterpret_cast<void*>(const_cast<T*>(in->data<T>()));
165
    out->mutable_data<T>(in->dims(), ctx.GetPlace());
166 167 168 169 170 171 172 173 174
    void* recvbuff = reinterpret_cast<void*>(out->data<T>());

    int ring_id = ctx.Attr<int>("ring_id");
    std::string group =
        std::string(HCOM_GROUP_PREFIX) + std::to_string(ring_id);
    auto comm =
        paddle::platform::HCCLCommContext::Instance().Get(ring_id, place);

    aclrtStream stream = nullptr;
175 176
    auto dev_ctx = static_cast<platform::NPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
177
    if (ctx.Attr<bool>("use_calc_stream")) {
178
      stream = dev_ctx->stream();
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    } else {
      stream = comm->stream();
    }

    HcclReduceOp hccl_red_type = HCCL_REDUCE_SUM;
    switch (red_type) {
      case kRedSum:
        hccl_red_type = HCCL_REDUCE_SUM;
        break;

      case kRedMax:
        hccl_red_type = HCCL_REDUCE_MAX;
        break;

      case kRedMin:
        hccl_red_type = HCCL_REDUCE_MIN;
        break;

      case kRedProd:
        hccl_red_type = HCCL_REDUCE_PROD;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

206 207 208 209 210 211 212 213 214 215 216
    VLOG(3) << "hccl allreduce, parameter is: "
            << "input num: " << in->dims() << "dtype: " << dtype
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size()
            << ", use_calc_stream:" << ctx.Attr<bool>("use_calc_stream")
            << ", stream:" << stream;

    framework::Tensor tmp;
    tmp.mutable_data<float>({8}, ctx.GetPlace());

L
Leo Chen 已提交
217
    bool has_nan = false;
218 219 220 221 222

    auto d_type = in->type();
    switch (d_type) {
      case framework::proto::VarType::FP16:
      case framework::proto::VarType::FP32: {
L
Leo Chen 已提交
223 224 225
        VLOG(4) << "prepare to check nan";
        has_nan = ContainsNan<T>(ctx, dev_ctx->stream(), in);
        VLOG(4) << "ContainsNan:" << has_nan;
226 227 228 229 230 231
        break;
      }
      default:
        break;
    }

L
Leo Chen 已提交
232
    if (has_nan) {
233 234 235 236 237 238 239 240 241
      T inf = static_cast<T>(std::numeric_limits<float>::infinity());
      VLOG(4) << "fill input data constant inf";
      auto dims = in->dims();
      auto mutable_in = const_cast<framework::Tensor*>(in);
      FillNpuTensorWithConstant<T>(mutable_in, inf);
      mutable_in->Resize(dims);
    }

    VLOG(3) << "hccl allreduce, parameter is: "
242
            << "input num: " << numel << "dtype: " << dtype
243 244 245
            << "hccl_red_type: " << hccl_red_type << ", group is: " << group
            << ", sendbuff:" << sendbuff << ", recvbuff:" << recvbuff
            << ", out_size:" << out->memory_size();
246 247 248 249 250 251 252 253 254 255 256 257 258

    PADDLE_ENFORCE_NPU_SUCCESS(platform::dynload::HcclAllReduce(
        sendbuff, recvbuff, numel, dtype, hccl_red_type, comm->comm(),
        reinterpret_cast<void*>(stream)));

    out->Resize(in->dims());
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with NPU."));
#endif
  }
};

259 260 261 262 263 264 265 266 267 268 269
template <ReduceType red_type, typename T>
class CAllReduceOpXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_XPU_BKCL)
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

    auto place = ctx.GetPlace();
    BKCLDataType dtype = platform::ToBKCLDataType(in->type());
    int64_t numel = in->numel();
270
    const void* sendbuff = in->data<T>();
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
    auto comm = platform::BKCLCommContext::Instance().Get(rid, place);

    XPUStream stream = nullptr;
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::XPUDeviceContext*>(dev_ctx)
                   ->x_context()
                   ->xpu_stream;
    } else {
      stream = comm->stream();
    }

    BKCLOp bkcl_red_type = BKCL_ADD;
    switch (red_type) {
      case kRedSum:
        bkcl_red_type = BKCL_ADD;
        break;

      case kRedMax:
        bkcl_red_type = BKCL_MAX;
        break;

      case kRedMin:
        bkcl_red_type = BKCL_MIN;
        break;

      case kRedProd:
        bkcl_red_type = BKCL_PRODUCT;
        break;

      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
    }

    PADDLE_ENFORCE_EQ(bkcl_all_reduce(comm->comm(), sendbuff, recvbuff, numel,
                                      dtype, bkcl_red_type, stream),
                      BKCL_SUCCESS, platform::errors::PreconditionNotMet(
                                        "BKCL all reduce failed"));
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should be compiled with XPU."));
#endif
  }
};

321 322
template <ReduceType red_type, typename T>
class CAllReduceOpCUDAKernel : public framework::OpKernel<T> {
323 324
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
325
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
326 327 328
    auto in = ctx.Input<framework::Tensor>("X");
    auto out = ctx.Output<framework::Tensor>("Out");

329
    auto place = ctx.GetPlace();
330 331
    ncclDataType_t dtype = platform::ToNCCLDataType(in->type());
    int64_t numel = in->numel();
332
    const void* sendbuff = in->data<T>();
333 334 335 336
    out->Resize(in->dims());
    void* recvbuff = out->mutable_data<T>(place);

    int rid = ctx.Attr<int>("ring_id");
337
    auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
338

339
    gpuStream_t stream = nullptr;
340 341 342 343 344 345 346
    if (ctx.Attr<bool>("use_calc_stream")) {
      auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
      stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
    } else {
      stream = comm->stream();
    }

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    ncclRedOp_t nccl_red_type = ncclSum;
    switch (red_type) {
      case kRedSum:
        nccl_red_type = ncclSum;
        break;

      case kRedMax:
        nccl_red_type = ncclMax;
        break;

      case kRedMin:
        nccl_red_type = ncclMin;
        break;

      case kRedProd:
        nccl_red_type = ncclProd;
        break;

      default:
M
MRXLT 已提交
366 367
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid reduce type: %d", red_type));
368 369
    }

370
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
371
        sendbuff, recvbuff, numel, dtype, nccl_red_type, comm->comm(), stream));
372
#else
M
MRXLT 已提交
373 374
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "PaddlePaddle should compile with GPU."));
375 376 377 378
#endif
  }
};

379 380 381 382 383 384 385
class CAllReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "(Tensor), tensor to be allreduced.");
    AddOutput("Out", "(Tensor) the allreduced result.");
    AddAttr<int>("ring_id", "(int default 0) communication ring id.")
        .SetDefault(0);
386 387 388 389
#if defined(PADDLE_WITH_ASCEND_CL)
    AddAttr<std::string>("tag", "(string default tag) tag for all reduce.")
        .SetDefault("tag");
#endif
390 391 392 393
    AddAttr<bool>(
        "use_calc_stream",
        "(bool default false) eject CUDA operations to calculation stream.")
        .SetDefault(false);
L
lilong12 已提交
394 395 396 397 398 399
    AddAttr<bool>(
        "use_model_parallel",
        "(bool default false) use this op with model parallel mode. In model "
        "parallel mode, the backward is c_identity which returns itself for "
        "c_allreduce_sum.")
        .SetDefault(false);
400 401 402 403 404 405 406 407 408 409 410 411 412 413
    AddComment(string::Sprintf(R"DOC(
CAllReduce %s Operator

Call collective AllReduce with reduce type %s. If input and output are
the same variable, in-place allreduce will be used.
Reference: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/usage/operations.html#allreduce
)DOC",
                               GetName(), GetName()));
  }

 protected:
  virtual std::string GetName() const = 0;
};

414 415
}  // namespace operators
}  // namespace paddle