dist_dropout.py 7.2 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import logging

import paddle
from paddle.framework import core
from paddle.utils import unique_name

from ...utils.log_utils import get_logger

_logger = get_logger(logging.INFO)
from ..random import determinate_rng, is_enable_auto_rand_ctrl
from ..utils import (
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping,
    set_var_dist_attr,
)
from .common import (
    DistributedOperatorImplContainer,
    register_distributed_operator_impl,
    register_distributed_operator_impl_container,
)
from .dist_eltwise import DistributedDefaultImpl0, DistributedElementwiseImpl0


class DistributedDropout(DistributedOperatorImplContainer):
    def __init__(self, op_type):
        super().__init__(op_type)


register_distributed_operator_impl_container(DistributedDropout("dropout"))


# Dist Dropout with Random Control
# Dropout re-use the compatible and cost function of elementwise
class DistributedDropoutImpl0(DistributedElementwiseImpl0):
    def __init__(self, name):
        super().__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

    @staticmethod
    def forward(ctx, *args, **kwargs):

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)

        if is_enable_auto_rand_ctrl() and not op_dist_attr.is_recompute:

            assert (
                op_dist_attr is not None
            ), f"forward op [{str(src_op)}] don't have dist attribute !"

            # check validation of inputs / outputs
            assert 'X' in kwargs, "input [{}] is not given".format('X')
            assert (
                len(kwargs['X']) == 1
            ), "input X should be only one tensor but got {}".format(
                kwargs['X']
            )
            assert 'Seed' in kwargs, "input [{}] is not given".format('Seed')

            if (
                src_op.has_attr("fix_seed")
                and src_op.attr("fix_seed")
                and src_op.has_attr("seed")
                and src_op.attr("seed")
            ):
                _logger.info(
                    "Auto Parallel Random Control Skiped Since manul seed is set by user: {}".format(
                        src_op
                    )
                )
            elif rank_id not in op_dist_attr.process_mesh.process_ids:
                pass
            # NOTE Adopt for recompute
            # If user already set seed, We should not modify it. But if the seed is added by recompute pass, it should be under control.
            # TODO  in future recompute pass should happen after parallel partitione. and remove this at that time.
            elif len(kwargs['Seed']) > 0 or len(src_op.input("Seed")) > 0:
                seed_var_name = kwargs['Seed'][0]
                if seed_var_name.startswith('rc_seed'):
                    pre_op = main_block.ops[-1]
                    assert (
                        pre_op.type == "seed"
                        and len(pre_op.attr("rng_name")) == 0
                    ), f"found exception op {str(pre_op)}"

                    # determinate rng
                    X_var = main_block._var_recursive(kwargs['X'][0])
                    X_dims_mapping = op_dist_attr.get_input_dims_mapping(
                        X_var.name
                    )
                    process_mesh = op_dist_attr.process_mesh
                    rng_name = determinate_rng(
                        rank_id, X_dims_mapping, process_mesh
                    )
                    # make recompute seed under control
                    pre_op._set_attr("rng_name", rng_name)
                    pre_op._set_attr("deterministic", True)
                    pre_op._set_attr("force_cpu", True)
                else:
                    _logger.info(
                        "Auto Parallel Random Control Skiped Since manul seed is set by user: {}".format(
                            src_op
                        )
                    )
            else:
                # determinate rng
                X_var = main_block._var_recursive(kwargs['X'][0])
                X_dims_mapping = op_dist_attr.get_input_dims_mapping(X_var.name)
                process_mesh = op_dist_attr.process_mesh

                rng_name = determinate_rng(
                    rank_id, X_dims_mapping, process_mesh
                )
                assert rng_name is not None and rng_name != ""

                # insert seed op
                seed_var = main_block.create_var(
                    name=paddle.fluid.unique_name.generate_with_ignorable_key(
                        ".".join(["tensor_parallel_seed", 'tmp'])
                    ),
                    dtype=paddle.int32,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                )

                # set new seed_var's dist_attr
                seed_var_dims_mapping = [-1]
                seed_var_dist_attr = set_var_dist_attr(
                    ctx, seed_var, seed_var_dims_mapping, process_mesh
                )

                # adopt for recompute
                # force_cpu to reduce sync copy from CPU->GPU->CPU, and reduce pipeline hang
                seed_op = main_block.append_op(
                    type='seed',
                    outputs={'Out': seed_var},
                    attrs={
                        'deterministic': True,
                        'rng_name': rng_name,
                        'force_cpu': True,
                    },
                )
                seed_op._set_attr('op_namescope', 'auto_tensor_parallel_seed')
                # set new seed op's dist_attr
                naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                    seed_op, process_mesh, seed_var_dims_mapping, ctx
                )

                # modify dropout op
                src_op.desc.set_input("Seed", [seed_var.name])
                src_op._remove_attr("fix_seed")
                src_op._remove_attr("seed")
                op_dist_attr.set_input_dist_attr(
                    seed_var.name, seed_var_dist_attr
                )
                kwargs['Seed'] = [seed_var.name]

        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        # dropout backward is deterministic by mask, and not need for random state control
        DistributedDefaultImpl0.backward(ctx, *args, **kwargs)


register_distributed_operator_impl(
    "dropout", DistributedDropoutImpl0("random_control")
)