concat_and_split.cc 7.2 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15
#include "paddle/fluid/operators/math/concat_and_split.h"
W
wanghuancoder 已提交
16 17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class CPUDeviceContext;
struct bfloat16;
struct float16;
}  // namespace platform
}  // namespace paddle
C
chengduoZH 已提交
27 28 29 30 31 32

namespace paddle {
namespace operators {
namespace math {

/*
C
chengduoZH 已提交
33
 * All tensors' dimension should be the same and the values of
34
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
35 36 37 38 39
 */
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
40
                  const std::vector<framework::Tensor>& input, int axis,
C
chengduoZH 已提交
41
                  framework::Tensor* output) {
C
chengduoZH 已提交
42
    // TODO(zcd): Add input data validity checking
43
    size_t num = input.size();
C
chengduoZH 已提交
44

45
    int64_t rows = 1;
C
chengduoZH 已提交
46 47 48 49
    auto dim_0 = input[0].dims();
    for (int i = 0; i < axis; ++i) {
      rows *= dim_0[i];
    }
50
    int64_t out_rows = rows, out_cols = 0;
C
chengduoZH 已提交
51

C
chengduoZH 已提交
52
    std::vector<int64_t> input_cols(input.size());
53 54
    for (size_t i = 0; i < num; ++i) {
      int64_t t_cols = input[i].numel() / rows;
C
chengduoZH 已提交
55
      out_cols += t_cols;
C
chengduoZH 已提交
56
      input_cols[i] = t_cols;
C
chengduoZH 已提交
57
    }
58
    auto cpu_place = BOOST_GET_CONST(platform::CPUPlace, context.GetPlace());
C
chengduoZH 已提交
59

C
chengduoZH 已提交
60
    // computation
L
luotao1 已提交
61
    auto output_data = output->data<T>();
62 63 64
    int64_t col_idx = 0;
    for (size_t j = 0; j < num; ++j) {
      int64_t col_len = input_cols[j];
L
luotao1 已提交
65
      auto input_data = input[j].data<T>();
66
      for (int64_t k = 0; k < out_rows; ++k) {
L
luotao1 已提交
67 68
        memory::Copy(cpu_place, output_data + k * out_cols + col_idx, cpu_place,
                     input_data + k * col_len, sizeof(T) * col_len);
C
chengduoZH 已提交
69
      }
L
luotao1 已提交
70
      col_idx += col_len;
C
chengduoZH 已提交
71
    }
C
chengduoZH 已提交
72 73 74
  }
};

C
chengduoZH 已提交
75 76
/*
 * All tensors' dimension should be the same and the values of
77
 * each dimension must be the same, except the axis dimension.
C
chengduoZH 已提交
78
 */
C
chengduoZH 已提交
79
template <typename T>
C
chengduo 已提交
80
class SplitFunctor<platform::CPUDeviceContext, T> {
C
chengduoZH 已提交
81 82
 public:
  void operator()(const platform::CPUDeviceContext& context,
Q
qiaolongfei 已提交
83
                  const framework::Tensor& input,
C
chengduoZH 已提交
84
                  const std::vector<const framework::Tensor*>& ref_inputs,
Q
qiaolongfei 已提交
85
                  const int axis, std::vector<framework::Tensor*>* outputs) {
C
chengduoZH 已提交
86
    // TODO(zcd): Add input data validity checking
Q
qiaolongfei 已提交
87
    size_t num = outputs->size();
C
chengduoZH 已提交
88

C
chengduoZH 已提交
89
    int input_rows = 1;
Q
qiaolongfei 已提交
90
    auto dim_0 = ref_inputs[0]->dims();
C
chengduoZH 已提交
91 92 93
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }
Q
qiaolongfei 已提交
94

C
chengduoZH 已提交
95 96
    int input_cols = 0;

97
    std::vector<int64_t> output_cols(outputs->size());
Q
qiaolongfei 已提交
98 99
    for (size_t i = 0; i < num; ++i) {
      int t_cols = ref_inputs[i]->numel() / input_rows;
C
chengduoZH 已提交
100 101 102
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
103
    auto cpu_place = BOOST_GET_CONST(platform::CPUPlace, context.GetPlace());
C
chengduoZH 已提交
104 105

    // computation
C
chengduoZH 已提交
106
    for (int k = 0; k < input_rows; ++k) {
C
chengduoZH 已提交
107 108
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
C
chengduoZH 已提交
109
      for (size_t j = 0; j < num; ++j) {
C
chengduoZH 已提交
110
        int col_len = output_cols[j];
Q
qiaolongfei 已提交
111
        auto* out_tensor = outputs->at(j);
Q
qiaolongfei 已提交
112 113 114 115 116
        if (out_tensor != nullptr) {
          T* dst_ptr = out_tensor->data<T>() + k * col_len;
          memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx,
                       sizeof(T) * col_len);
        }
C
chengduoZH 已提交
117 118 119
        col_idx += col_len;
      }
    }
C
chengduoZH 已提交
120 121
  }
};
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

#ifdef PADDLE_WITH_XPU
/*
 * All tensors' dimension should be the same and the values of
 * each dimension must be the same, except the axis dimension.
 */
template <typename T>
class ConcatFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const std::vector<framework::Tensor>& input, int axis,
                  framework::Tensor* output) {
    int dev_id =
        BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId();
    platform::XPUDeviceGuard guard(dev_id);

    int num = input.size();
    auto input_dims = input[0].dims();

    std::vector<std::vector<int>> xdims_list(num);
    for (int i = 0; i < num; ++i) {
      std::vector<int> tmp_dims(input_dims.size());
      for (int j = 0; j < input_dims.size(); ++j) {
        tmp_dims[j] = input[i].dims()[j];
      }
      xdims_list[i] = tmp_dims;
    }

    std::vector<const T*> ptrs;
    for (int i = 0; i < num; ++i) {
      ptrs.push_back(input[i].data<T>());
    }

    auto r = xpu::concat<T>(context.x_context(), ptrs, output->data<T>(),
                            xdims_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};

template <typename T>
class SplitFunctor<platform::XPUDeviceContext, T> {
 public:
  void operator()(const platform::XPUDeviceContext& context,
                  const framework::Tensor& input,
                  const std::vector<const framework::Tensor*>& ref_inputs,
                  const int axis, std::vector<framework::Tensor*>* outputs) {
    int dev_id =
        BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId();
    platform::XPUDeviceGuard guard(dev_id);

    auto& ins = ref_inputs;

    int num = ins.size();
    auto input_dims = ins[0]->dims();
    std::vector<int> split_list(num);
    std::vector<int> xdims_list(input_dims.size());
    int total_length = 0;
    for (int i = 0; i < num; ++i) {
      split_list[i] = ins[i]->dims()[axis];
      total_length += ins[i]->dims()[axis];
    }

    for (int i = 0; i < input_dims.size(); ++i) {
      if (i == axis) continue;
      xdims_list[i] = input_dims[i];
    }
    xdims_list[axis] = total_length;

    std::vector<T*> ptrs(num);
    for (int i = 0; i < num; ++i) {
      ptrs[i] = outputs->at(i)->data<T>();
    }

    auto r = xpu::split<T>(context.x_context(), input.data<T>(), ptrs,
                           xdims_list, split_list, axis);
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d %s], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r, XPUAPIErrorMsg[r]));
  }
};
#endif

C
chengduoZH 已提交
212 213
#define DEFINE_FUNCTOR(type)                                      \
  template class ConcatFunctor<platform::CPUDeviceContext, type>; \
C
chengduo 已提交
214
  template class SplitFunctor<platform::CPUDeviceContext, type>;
C
chengduoZH 已提交
215

C
chengduoZH 已提交
216
FOR_ALL_TYPES(DEFINE_FUNCTOR);
C
chengduoZH 已提交
217

218 219 220 221 222 223 224 225
#ifdef PADDLE_WITH_XPU
#define DEFINE_XPU_FUNCTOR(type)                                  \
  template class ConcatFunctor<platform::XPUDeviceContext, type>; \
  template class SplitFunctor<platform::XPUDeviceContext, type>;

DEFINE_XPU_FUNCTOR(float)
#endif

C
chengduoZH 已提交
226 227 228
}  // namespace math
}  // namespace operators
}  // namespace paddle