mode_kernel.cc 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/mode_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
19
#include "paddle/phi/kernels/funcs/math_function.h"
20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/phi/kernels/funcs/mode.h"

namespace phi {

template <typename T, typename Context>
void ModeKernel(const Context& dev_ctx,
                const DenseTensor& x,
                int axis,
                bool keepdim,
                DenseTensor* out,
                DenseTensor* indices) {
  const auto& in_dims = x.dims();
32 33 34 35 36 37
  for (int i = 0; i < in_dims.size(); i++) {
    PADDLE_ENFORCE_LT(0,
                      in_dims[i],
                      errors::InvalidArgument(
                          "The dims of Input(X) should be greater than 0."));
  }
38 39 40 41 42 43
  auto out_dims = out->dims();
  // axis < 0, cacluate the real axis
  if (axis < 0) axis += in_dims.size();

  T* output_data = dev_ctx.template Alloc<T>(out);
  int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);
44 45 46 47 48 49 50

  if (in_dims.size() == 0) {
    phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), false, out);
    phi::funcs::set_constant(dev_ctx, indices, 0);
    return;
  }

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  // if axis is not the last dim, transpose it to the last dim, do the
  // calculation, then tranpose it back to original axis.
  if (axis == in_dims.size() - 1) {
    const int64_t& input_height =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const int64_t& input_width = in_dims[in_dims.size() - 1];
    funcs::GetMode<T, int64_t>(input_height,
                               input_width,
                               in_dims.size(),
                               &x,
                               output_data,
                               indices_data);
  } else {
    std::vector<int> trans_axis;
    for (int i = 0; i < axis; i++) {
      trans_axis.emplace_back(i);
    }
    trans_axis.push_back(in_dims.size() - 1);
    for (int i = axis + 1; i < in_dims.size() - 1; i++) {
      trans_axis.emplace_back(i);
    }
    trans_axis.emplace_back(axis);

    if (!keepdim) {
      std::vector<int> tmp_out_shape;
      for (int i = 0; i < axis; i++) {
        tmp_out_shape.emplace_back(in_dims[i]);
      }
      tmp_out_shape.emplace_back(1);
      for (int i = axis + 1; i < in_dims.size(); i++) {
        tmp_out_shape.emplace_back(in_dims[i]);
      }
      DDim tmp_out_dim = phi::make_ddim(tmp_out_shape);
      out->Resize(tmp_out_dim);
      indices->Resize(tmp_out_dim);
    }

    // get the trans input_dims, out_dims
    DDim trans_shape(in_dims);
    DDim trans_out_shape(in_dims);

    for (size_t i = 0; i < trans_axis.size(); i++) {
      trans_shape[i] = in_dims[trans_axis[i]];
      trans_out_shape[i] = in_dims[trans_axis[i]];
    }
    trans_out_shape[in_dims.size() - 1] = 1;

    DenseTensor trans_input;
    trans_input.Resize(trans_shape);
    dev_ctx.template Alloc<T>(&trans_input);
    int ndims = trans_axis.size();

    // transpose the input value
    funcs::TransCompute<CPUContext, T>(
        ndims, dev_ctx, x, &trans_input, trans_axis);

    const int64_t input_height =
        phi::product(phi::slice_ddim(trans_shape, 0, trans_shape.size() - 1));
    const int64_t input_width = trans_shape[trans_shape.size() - 1];
    DenseTensor tmp_out;
    tmp_out.Resize(trans_out_shape);
    T* t_out = dev_ctx.template Alloc<T>(&tmp_out);

    DenseTensor tmp_indices;
    tmp_indices.Resize(trans_out_shape);
    int64_t* t_ind = dev_ctx.template Alloc<int64_t>(&tmp_indices);

    funcs::GetMode<T, int64_t>(
        input_height, input_width, in_dims.size(), &trans_input, t_out, t_ind);
    // transpose back
    funcs::TransCompute<CPUContext, int64_t>(
        ndims, dev_ctx, tmp_indices, indices, trans_axis);
    funcs::TransCompute<CPUContext, T>(
        ndims, dev_ctx, tmp_out, out, trans_axis);
    if (!keepdim) {
      out->Resize(out_dims);
      indices->Resize(out_dims);
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
135 136 137
    mode, CPU, ALL_LAYOUT, phi::ModeKernel, float, double, int32_t, int64_t) {
  kernel->OutputAt(1).SetDataType(phi::DataType::INT64);
}