kernel_selection.html 15.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Background &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
31

32 33 34 35 36 37 38 39 40 41 42 43 44
  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../index.html"/> 

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

45 46 47 48 49 50 51 52 53 54 55 56 57
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../index_cn.html" class="icon icon-home"> PaddlePaddle
          

          
58 59
          </a>

60 61 62 63 64 65
          
            
            
          

          
66 67 68 69 70 71
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
72
</div>
73 74

          
75 76 77 78 79 80 81 82 83 84 85 86
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
                <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../build_and_install/index_cn.html">安装与编译</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_cn.html">进阶使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../dev/index_cn.html">开发标准</a></li>
<li class="toctree-l1"><a class="reference internal" href="../faq/index_cn.html">FAQ</a></li>
87 88
</ul>

89 90 91 92
            
          
        </div>
      </div>
93 94
    </nav>

95
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
96

97 98 99 100 101
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../index_cn.html">PaddlePaddle</a>
      </nav>
102 103


104 105 106 107
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
108

109
 
110 111 112 113 114



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
115
    <li><a href="../index_cn.html">Docs</a> &raquo;</li>
116 117
      
    <li>Background</li>
118 119 120 121 122 123 124
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../_sources/design/kernel_selection.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
125
  </ul>
126
  <hr/>
127 128 129 130 131 132
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="background">
<span id="background"></span><h1>Background<a class="headerlink" href="#background" title="永久链接至标题"></a></h1>
133 134 135
<p>Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the <code class="docutils literal"><span class="pre">OpKernelType</span></code> to describe kernel types that operators can hold.</p>
<p>The <code class="docutils literal"><span class="pre">OpKernelType</span></code> is as follows:</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="k">struct</span> <span class="n">OpKernelType</span> <span class="p">{</span>
136 137
  <span class="n">Place</span> <span class="n">place_</span><span class="p">;</span>
  <span class="n">DataType</span> <span class="n">data_type_</span><span class="p">;</span>
138 139
  <span class="n">DataLayout</span> <span class="n">data_layout_</span><span class="p">;</span>
  <span class="n">LibraryType</span> <span class="n">library_type_</span><span class="p">;</span>
140 141 142
<span class="p">};</span>
</pre></div>
</div>
143 144 145 146 147 148
<ul class="simple">
<li>The <code class="docutils literal"><span class="pre">place_</span></code> is a descriptor of the device, e.g., CPUPlace, CUDAPlace.</li>
<li>The <code class="docutils literal"><span class="pre">data_type_</span></code> is the data type that this kernel performs on, e.g., <code class="docutils literal"><span class="pre">FP32</span></code>, <code class="docutils literal"><span class="pre">INT64</span></code>. Note that one kernel may have inputs with different data types. However, it will be a major <code class="docutils literal"><span class="pre">data_type</span></code>. For example, the <code class="docutils literal"><span class="pre">cross_entropy</span></code> takes <code class="docutils literal"><span class="pre">int64</span></code> as it label, and <code class="docutils literal"><span class="pre">double</span></code>/<code class="docutils literal"><span class="pre">float</span></code> as its input logit and output cost. The major <code class="docutils literal"><span class="pre">data_type</span></code> of <code class="docutils literal"><span class="pre">cross_entropy</span></code> is <code class="docutils literal"><span class="pre">float</span></code> or <code class="docutils literal"><span class="pre">double</span></code>.</li>
<li>The <code class="docutils literal"><span class="pre">data_layout_</span></code> is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as <code class="docutils literal"><span class="pre">nChw8c</span></code>. Each kind of layout will invoke the different kernel.</li>
<li>The <code class="docutils literal"><span class="pre">library_type_</span></code> describes the computational library, e.g., <code class="docutils literal"><span class="pre">MKLDNN</span></code>, <code class="docutils literal"><span class="pre">CUDNN</span></code>.</li>
</ul>
149 150 151 152 153 154 155 156 157
</div>
<div class="section" id="problem">
<span id="problem"></span><h1>Problem<a class="headerlink" href="#problem" title="永久链接至标题"></a></h1>
<p>We register a kernel for every operator and every kernel type ideally. However, it is impracticable for the following situations.</p>
<ol class="simple">
<li>Some operators, like CRF, are complicated and inefficient to be implemented on GPU. The CRF operator will only have a CPU kernel.</li>
<li>Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem.</li>
<li>Some layout and place are particular. One example is that MKLDNN uses <code class="docutils literal"><span class="pre">nChw8</span></code> and there is no other library uses <code class="docutils literal"><span class="pre">nChw8c</span></code>.</li>
</ol>
158 159 160 161 162 163 164 165 166 167 168
<p>Take one situation to give a detailed explanation, if we have two Operators: OP1 and OP2, OP1 has one output <code class="docutils literal"><span class="pre">op1_to_op2</span></code>, and <code class="docutils literal"><span class="pre">op1_to_op2</span></code> is the input of OP2.</p>
<p>If OP1 and OP2 run on the same place(for example CPUPlace), then <code class="docutils literal"><span class="pre">op1_2_op2</span></code> can be used directly by OP2.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">OP1</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
     <span class="o">|</span>
 <span class="n">op1_2_op2</span>
     <span class="o">|</span>
<span class="n">OP2</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
</pre></div>
</div>
<p>If OP1 and OP2 run one different place, then OP2 cannot <code class="docutils literal"><span class="pre">use</span> <span class="pre">op1_2_op2</span></code> directly.</p>
<p>Problems under these situations are similar. We can formalize this problem as follow.</p>
169 170
<p>We register kernels with types $KT = {kt_1, kt_2, kt_3, ...}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$.</p>
</div>
171 172 173 174
<div class="section" id="solution-data-transform">
<span id="solution-data-transform"></span><h1>Solution: data transform<a class="headerlink" href="#solution-data-transform" title="永久链接至标题"></a></h1>
<p>It is clear that transforming inputs of an operator to adapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods.</p>
<p>We can infer kernel type for each input of an operator. We let this kernel type as <code class="docutils literal"><span class="pre">actual</span> <span class="pre">kernel</span> <span class="pre">type</span> <span class="pre">for</span> <span class="pre">var</span></code>, which means this kernel type is the kernel type that can process this input variable.</p>
175
<p>We can get a kernel type by 1) The configuration of operator description. (Users may want to force use <code class="docutils literal"><span class="pre">MKL</span></code> for <code class="docutils literal"><span class="pre">conv</span></code> operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as <code class="docutils literal"><span class="pre">expect</span> <span class="pre">kernel</span> <span class="pre">type</span></code>.</p>
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
<p>We transform the input data from <code class="docutils literal"><span class="pre">actual</span></code> to <code class="docutils literal"><span class="pre">expect</span></code> if the actual kernel type is not as same as expect kernel type.</p>
<p>The algorithm is described as following</p>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="kt">void</span> <span class="n">OperatorWithKernel</span><span class="o">::</span><span class="n">Run</span><span class="p">(</span>
        <span class="k">const</span> <span class="n">Scope</span><span class="o">&amp;</span> <span class="n">scope</span><span class="p">,</span>
        <span class="k">const</span> <span class="n">platform</span><span class="o">::</span><span class="n">Place</span><span class="o">&amp;</span> <span class="n">place</span><span class="p">)</span> <span class="k">const</span> <span class="p">{</span>
  <span class="n">ExecutionContext</span> <span class="n">ctx</span><span class="p">(...);</span>
  <span class="k">auto</span> <span class="n">expected_kernel_key</span> <span class="o">=</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">GetExpectedKernelType</span><span class="p">(</span><span class="n">ctx</span><span class="p">);</span>

  <span class="n">Scope</span><span class="o">&amp;</span> <span class="n">new_scope</span> <span class="o">=</span> <span class="n">scope</span><span class="p">.</span><span class="n">NewScope</span><span class="p">();</span>

  <span class="k">for</span> <span class="p">(</span><span class="k">auto</span><span class="o">&amp;</span> <span class="nl">var_name</span> <span class="p">:</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">Inputs</span><span class="p">())</span> <span class="p">{</span>
    <span class="k">auto</span><span class="o">*</span> <span class="n">tensor_in</span> <span class="o">=</span> <span class="n">GetTensor</span><span class="p">(</span><span class="n">var_name</span><span class="p">);</span>
    <span class="k">auto</span> <span class="n">kernel_type_for_var</span> <span class="o">=</span> <span class="k">this</span><span class="o">-&gt;</span><span class="n">GetKernelTypeForVar</span><span class="p">(...);</span>
    <span class="k">if</span> <span class="p">(</span><span class="n">kernel_type_for_var</span><span class="p">.</span><span class="n">place_</span> <span class="o">!=</span> <span class="n">expected_kernel_key</span><span class="p">.</span><span class="n">place_</span><span class="p">)</span> <span class="p">{</span>
      <span class="k">auto</span><span class="o">*</span> <span class="n">trans_var</span> <span class="o">=</span> <span class="n">new_scope</span><span class="p">.</span><span class="n">Var</span><span class="p">(</span><span class="n">var_name</span><span class="p">);</span>
      <span class="k">auto</span><span class="o">*</span> <span class="n">out</span> <span class="o">=</span> <span class="n">DataTransform</span><span class="p">(</span><span class="n">expected_kernel_key</span><span class="p">,</span>
                                <span class="n">kernel_type_for_var</span><span class="p">,</span>
                                <span class="o">*</span><span class="n">tensor_in</span><span class="p">);</span>
      <span class="n">CopyVariableWithTensor</span><span class="p">(...);</span>
    <span class="p">}</span>
  <span class="p">}</span>

  <span class="k">auto</span> <span class="n">kernel</span> <span class="o">=</span> <span class="n">kernels</span><span class="p">.</span><span class="n">find</span><span class="p">(</span><span class="n">expected_kernel_key</span><span class="p">);</span>
  <span class="n">kernel</span><span class="o">-&gt;</span><span class="n">Compute</span><span class="p">(</span><span class="n">ExecutionContext</span><span class="p">(...));</span>
200 201 202
<span class="p">}</span>
</pre></div>
</div>
203 204 205 206 207 208 209 210 211 212 213 214
<p>then the actual process for the multi-device above will be:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">OP1</span><span class="p">(</span><span class="n">CPUPlace</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">op1_2_op2</span><span class="p">(</span><span class="n">on</span> <span class="n">CPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="p">[</span><span class="n">transform</span><span class="p">](</span><span class="kn">from</span> <span class="nn">CPU</span> <span class="n">to</span> <span class="n">GPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">op1_2_op2</span><span class="p">(</span><span class="n">on</span> <span class="n">GPU</span><span class="p">)</span>
     <span class="o">|</span>
<span class="n">OP2</span><span class="p">(</span><span class="n">CUDAPlace</span><span class="p">)</span>
</pre></div>
</div>
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
252
            HAS_SOURCE:  true
253 254 255 256 257 258 259
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
260

261 262 263 264 265 266
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
267

268
  
269 270 271 272 273 274 275
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
276 277 278

</body>
</html>