cmd_argument_en.html 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Command-line arguments &mdash; PaddlePaddle  documentation</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
  

  
  

  

  
  
    

  

  
  
27
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
28 29 30
  

  
31

32 33
  
        <link rel="index" title="Index"
34 35 36 37 38 39
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/>
        <link rel="up" title="Distributed Training" href="index_en.html"/>
        <link rel="next" title="Use different clusters" href="multi_cluster/index_en.html"/>
        <link rel="prev" title="Preparations" href="preparations_en.html"/> 
40 41

  
42
  <script src="../../_static/js/modernizr.min.js"></script>
43 44 45 46 47

</head>

<body class="wy-body-for-nav" role="document">

48 49 50 51 52 53 54 55 56 57 58 59 60
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../../index_en.html" class="icon icon-home"> PaddlePaddle
          

          
61 62
          </a>

63 64 65 66 67 68
          
            
            
          

          
69
<div role="search">
70
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
71 72 73 74
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
75
</div>
76 77

          
78 79 80 81 82 83 84 85 86
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
                <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../build_and_install/index_en.html">Install and Build</a></li>
87
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">HOW TO</a><ul class="current">
88
<li class="toctree-l2"><a class="reference internal" href="../cmd_parameter/index_en.html">Set Command-line Parameters</a></li>
89 90
<li class="toctree-l2 current"><a class="reference internal" href="index_en.html">Distributed Training</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="preparations_en.html">Preparations</a></li>
91 92 93 94 95 96
<li class="toctree-l3 current"><a class="current reference internal" href="#">Command-line arguments</a><ul>
<li class="toctree-l4"><a class="reference internal" href="#starting-parameter-server">Starting parameter server</a></li>
<li class="toctree-l4"><a class="reference internal" href="#starting-trainer">Starting trainer</a></li>
<li class="toctree-l4"><a class="reference internal" href="#prepare-training-dataset">Prepare Training Dataset</a></li>
<li class="toctree-l4"><a class="reference internal" href="#prepare-training-program">Prepare Training program</a></li>
<li class="toctree-l4"><a class="reference internal" href="#async-sgd-update">Async SGD Update</a></li>
97 98
</ul>
</li>
99
<li class="toctree-l3"><a class="reference internal" href="multi_cluster/index_en.html">Use different clusters</a></li>
100 101
</ul>
</li>
102
<li class="toctree-l2"><a class="reference internal" href="../rnn/index_en.html">RNN Models</a></li>
103 104 105
<li class="toctree-l2"><a class="reference internal" href="../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
106 107
<li class="toctree-l1"><a class="reference internal" href="../../dev/index_en.html">Development</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../faq/index_en.html">FAQ</a></li>
108 109
</ul>

110 111 112 113
            
          
        </div>
      </div>
114 115
    </nav>

116
    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
117

118 119 120 121 122
      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../../index_en.html">PaddlePaddle</a>
      </nav>
123 124


125 126 127 128
      
      <div class="wy-nav-content">
        <div class="rst-content">
          
129

130
 
131 132 133 134 135



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
136
    <li><a href="../../index_en.html">Docs</a> &raquo;</li>
137
      
138
          <li><a href="../index_en.html">HOW TO</a> &raquo;</li>
139
      
140
          <li><a href="index_en.html">Distributed Training</a> &raquo;</li>
141
      
142
    <li>Command-line arguments</li>
143 144 145 146 147 148 149
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../../_sources/howto/cluster/cmd_argument_en.md.txt" rel="nofollow"> View page source</a>
          
        
      </li>
150
  </ul>
151
  <hr/>
152 153 154 155
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
156 157 158
  <div class="section" id="command-line-arguments">
<span id="command-line-arguments"></span><h1>Command-line arguments<a class="headerlink" href="#command-line-arguments" title="Permalink to this headline"></a></h1>
<p>We&#8217;ll take <code class="docutils literal"><span class="pre">doc/howto/cluster/src/word2vec</span></code> as an example to introduce distributed training using PaddlePaddle v2 API.</p>
159
<div class="section" id="starting-parameter-server">
160
<span id="starting-parameter-server"></span><h2>Starting parameter server<a class="headerlink" href="#starting-parameter-server" title="Permalink to this headline"></a></h2>
161
<p>Type the below command to start a parameter server which will wait for trainers to connect:</p>
162
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ paddle pserver --port<span class="o">=</span><span class="m">7164</span> --ports_num<span class="o">=</span><span class="m">1</span> --ports_num_for_sparse<span class="o">=</span><span class="m">1</span> --num_gradient_servers<span class="o">=</span><span class="m">1</span> --nics<span class="o">=</span>eth0
163 164 165
</pre></div>
</div>
<p>If you wish to run parameter servers in background, and save a log file, you can type:</p>
166
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ stdbuf -oL /usr/bin/nohup paddle pserver --port<span class="o">=</span><span class="m">7164</span> --ports_num<span class="o">=</span><span class="m">1</span> --ports_num_for_sparse<span class="o">=</span><span class="m">1</span> --num_gradient_servers<span class="o">=</span><span class="m">1</span> --nics<span class="o">=</span>eth0 <span class="p">&amp;</span>&gt; pserver.log <span class="p">&amp;</span>
167 168
</pre></div>
</div>
169 170 171 172
<p>Parameter Description</p>
<ul class="simple">
<li>port: <strong>required, default 7164</strong>, port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput.</li>
<li>ports_num: <strong>required, default 1</strong>, total number of ports will listen on.</li>
173
<li>ports_num_for_sparse: <strong>required, default 0</strong>, number of ports which serves sparse parameter update.</li>
174
<li>num_gradient_servers: <strong>required, default 1</strong>, total number of gradient servers.</li>
175
<li>nics: <strong>optional, default xgbe0,xgbe1</strong>, network device name which paramter server will listen on.</li>
176
</ul>
177 178
</div>
<div class="section" id="starting-trainer">
179
<span id="starting-trainer"></span><h2>Starting trainer<a class="headerlink" href="#starting-trainer" title="Permalink to this headline"></a></h2>
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
<p>Type the command below to start the trainer(name the file whatever you want, like &#8220;train.py&#8221;)</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ python train.py
</pre></div>
</div>
<p>Trainers&#8217; network need to be connected with parameter servers&#8217; network to finish the job. Trainers need to know port and IPs to locate parameter servers. You can pass arguments to trainers through <a class="reference external" href="https://en.wikipedia.org/wiki/Environment_variable">environment variables</a> or pass to <code class="docutils literal"><span class="pre">paddle.init()</span></code> function. Arguments passed to the <code class="docutils literal"><span class="pre">paddle.init()</span></code> function will overwrite environment variables.</p>
<p>Use environment viriables:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">PADDLE_INIT_USE_GPU</span><span class="o">=</span>False
<span class="nb">export</span> <span class="nv">PADDLE_INIT_TRAINER_COUNT</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORT</span><span class="o">=</span><span class="m">7164</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORTS_NUM</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORTS_NUM_FOR_SPARSE</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_NUM_GRADIENT_SERVERS</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_TRAINER_ID</span><span class="o">=</span><span class="m">0</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PSERVERS</span><span class="o">=</span><span class="m">127</span>.0.0.1
python train.py
</pre></div>
</div>
<p>Pass arguments:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">paddle</span><span class="o">.</span><span class="n">init</span><span class="p">(</span>
        <span class="n">use_gpu</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
        <span class="n">trainer_count</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">port</span><span class="o">=</span><span class="mi">7164</span><span class="p">,</span>
        <span class="n">ports_num</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">ports_num_for_sparse</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">num_gradient_servers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">trainer_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
        <span class="n">pservers</span><span class="o">=</span><span class="s2">&quot;127.0.0.1&quot;</span><span class="p">)</span>
</pre></div>
</div>
209 210 211
<p>Parameter Description</p>
<ul class="simple">
<li>use_gpu: <strong>optional, default False</strong>, set to &#8220;True&#8221; to enable GPU training.</li>
212
<li>trainer_count: <strong>required, default 1</strong>, number of threads in current trainer.</li>
213 214
<li>port: <strong>required, default 7164</strong>, port to connect to parameter server.</li>
<li>ports_num: <strong>required, default 1</strong>, number of ports for communication.</li>
215
<li>ports_num_for_sparse: <strong>required, default 0</strong>, number of ports for sparse type caculation.</li>
216
<li>num_gradient_servers: <strong>required, default 1</strong>, number of trainers in current job.</li>
217 218 219
<li>trainer_id: <strong>required, default 0</strong>, ID for every trainer, start from 0.</li>
<li>pservers: <strong>required, default 127.0.0.1</strong>, list of IPs of parameter servers, separated by &#8221;,&#8221;.</li>
</ul>
220 221
</div>
<div class="section" id="prepare-training-dataset">
222
<span id="prepare-training-dataset"></span><h2>Prepare Training Dataset<a class="headerlink" href="#prepare-training-dataset" title="Permalink to this headline"></a></h2>
223 224 225 226 227 228 229 230 231 232
<p>Here&#8217;s some example code <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py">prepare.py</a>, it will download public <code class="docutils literal"><span class="pre">imikolov</span></code> dataset and split it into multiple files according to job parallelism(trainers count). Modify <code class="docutils literal"><span class="pre">SPLIT_COUNT</span></code> at the begining of <code class="docutils literal"><span class="pre">prepare.py</span></code> to change the count of output files.</p>
<p>In the real world, we often use <code class="docutils literal"><span class="pre">MapReduce</span></code> job&#8217;s output as training data, so there will be lots of files. You can use <code class="docutils literal"><span class="pre">mod</span></code> to assign training file to trainers:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="n">train_list</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">flist</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="s2">&quot;/train_data/&quot;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">flist</span><span class="p">:</span>
  <span class="n">suffix</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;-&quot;</span><span class="p">)[</span><span class="mi">1</span><span class="p">])</span>
  <span class="k">if</span> <span class="n">suffix</span> <span class="o">%</span> <span class="n">TRAINER_COUNT</span> <span class="o">==</span> <span class="n">TRAINER_ID</span><span class="p">:</span>
    <span class="n">train_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
</pre></div>
233
</div>
234
<p>Example code <code class="docutils literal"><span class="pre">prepare.py</span></code> will split training data and testing data into 3 files with digital suffix like <code class="docutils literal"><span class="pre">-00000</span></code>, <code class="docutils literal"><span class="pre">-00001</span></code> and<code class="docutils literal"><span class="pre">-00002</span></code>:</p>
235 236 237 238 239 240 241 242
<div class="highlight-bash"><div class="highlight"><pre><span></span>train.txt
train.txt-00000
train.txt-00001
train.txt-00002
test.txt
test.txt-00000
test.txt-00001
test.txt-00002
243 244 245 246 247 248
</pre></div>
</div>
<p>When job started, every trainer needs to get it&#8217;s own part of data. In some distributed systems a storage service will be provided, so the date under that path can be accessed by all the trainer nodes. Without the storage service, you must copy the training data to each trainer node.</p>
<p>Different training jobs may have different data format and <code class="docutils literal"><span class="pre">reader()</span></code> function, developers may need to write different data prepare scripts and <code class="docutils literal"><span class="pre">reader()</span></code> functions for their job.</p>
</div>
<div class="section" id="prepare-training-program">
249
<span id="prepare-training-program"></span><h2>Prepare Training program<a class="headerlink" href="#prepare-training-program" title="Permalink to this headline"></a></h2>
250 251
<p>We&#8217;ll create a <em>workspace</em> directory on each node, storing your training program, dependencies, mounted or downloaded dataset directory.</p>
<p>Your workspace may looks like:</p>
252 253 254 255 256 257 258 259 260 261 262 263
<div class="highlight-bash"><div class="highlight"><pre><span></span>.
<span class="p">|</span>-- my_lib.py
<span class="p">|</span>-- word_dict.pickle
<span class="p">|</span>-- train.py
<span class="p">|</span>-- train_data_dir/
<span class="p">|</span>   <span class="p">|</span>-- train.txt-00000
<span class="p">|</span>   <span class="p">|</span>-- train.txt-00001
<span class="p">|</span>   <span class="p">|</span>-- train.txt-00002
<span class="sb">`</span>-- test_data_dir/
    <span class="p">|</span>-- test.txt-00000
    <span class="p">|</span>-- test.txt-00001
    <span class="sb">`</span>-- test.txt-00002
264 265
</pre></div>
</div>
266 267 268 269 270
<ul>
<li><p class="first"><code class="docutils literal"><span class="pre">my_lib.py</span></code>: user defined libraries, like PIL libs. This is optional.</p>
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">word_dict.pickle</span></code>: dict file for training word embeding.</p>
</li>
271
<li><p class="first"><code class="docutils literal"><span class="pre">train.py</span></code>: training program. Sample code: <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py">api_train_v2_cluster.py</a>. <strong><em>NOTE:</em></strong> You may need to modify the head part of <code class="docutils literal"><span class="pre">train.py</span></code> when using different cluster platform to retrive configuration environment variables:</p>
272 273 274 275 276
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cluster_train_file</span> <span class="o">=</span> <span class="s2">&quot;./train_data_dir/train/train.txt&quot;</span>
<span class="n">cluster_test_file</span> <span class="o">=</span> <span class="s2">&quot;./test_data_dir/test/test.txt&quot;</span>
<span class="n">node_id</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">getenv</span><span class="p">(</span><span class="s2">&quot;OMPI_COMM_WORLD_RANK&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">node_id</span><span class="p">:</span>
    <span class="k">raise</span> <span class="ne">EnvironmentError</span><span class="p">(</span><span class="s2">&quot;must provied OMPI_COMM_WORLD_RANK&quot;</span><span class="p">)</span>
277 278
</pre></div>
</div>
279 280 281 282 283 284 285
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">train_data_dir</span></code>: containing training data. Mount from storage service or copy trainning data to here.</p>
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">test_data_dir</span></code>: containing testing data.</p>
</li>
</ul>
</div>
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
<div class="section" id="async-sgd-update">
<span id="async-sgd-update"></span><h2>Async SGD Update<a class="headerlink" href="#async-sgd-update" title="Permalink to this headline"></a></h2>
<p>We can set some parameters of the optimizer to make it support async SGD update.
For example, we can set the <code class="docutils literal"><span class="pre">is_async</span></code> and <code class="docutils literal"><span class="pre">async_lagged_grad_discard_ratio</span></code> of the <code class="docutils literal"><span class="pre">AdaGrad</span></code> optimizer:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">adagrad</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">AdaGrad</span><span class="p">(</span>
    <span class="n">is_async</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span>
    <span class="n">async_lagged_grad_discard_ratio</span><span class="o">=</span><span class="mf">1.6</span><span class="p">,</span>
    <span class="n">learning_rate</span><span class="o">=</span><span class="mf">3e-3</span><span class="p">,</span>
    <span class="n">regularization</span><span class="o">=</span><span class="n">paddle</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">L2Regularization</span><span class="p">(</span><span class="mf">8e-4</span><span class="p">))</span>
</pre></div>
</div>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">is_async</span></code>: Is Async-SGD or not.</li>
<li><code class="docutils literal"><span class="pre">async_lagged_grad_discard_ratio</span></code>: For async SGD gradient commit control.
when <code class="docutils literal"><span class="pre">async_lagged_grad_discard_ratio</span> <span class="pre">*</span> <span class="pre">num_gradient_servers</span></code> commit passed,
current async gradient will be discard silently.</li>
</ul>
</div>
304 305 306 307 308 309 310 311 312
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
313
        <a href="multi_cluster/index_en.html" class="btn btn-neutral float-right" title="Use different clusters" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
314 315
      
      
316
        <a href="preparations_en.html" class="btn btn-neutral" title="Preparations" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
346
            URL_ROOT:'../../',
347 348 349
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
350
            HAS_SOURCE:  true
351 352
        };
    </script>
353 354 355
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
356
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
357

358 359 360 361
  

  
  
362
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
363
  
364

365
  
366 367 368 369 370 371 372
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   
373 374

</body>
375
</html>