operator.cc 18.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <glog/logging.h>
Q
Qiao Longfei 已提交
15

16
#include <algorithm>
D
dzhwinter 已提交
17

18
#include "paddle/framework/data_transform.h"
D
dzhwinter 已提交
19 20
#include "paddle/framework/executor.h"
#include "paddle/framework/operator.h"
21
#include "paddle/framework/shape_inference.h"
22
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
23 24 25 26

namespace paddle {
namespace framework {

D
dzhwinter 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

void UseCPU() {
  kKernelPriority.clear();
  /*Plain CPU*/
  auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
}

void UseMKLDNN() {
  UseCPU();
#if PADDLE_WITH_MKLML
  {
    /*MKLDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseCUDA() {
  UseMKLDNN();
#if PADDLE_WITH_CUDA
  /*Plain GPU*/
  auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain);
  kKernelPriority.insert(kKernelPriority.begin(), pair0);
#endif
}

void UseCUDNN() {
  UseCUDA();
#if PADDLE_WITH_CUDA
  if (platform::dynload::HasCUDNN()) {
    /*CUDNN Kernel*/
    auto pair0 = std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN);
    kKernelPriority.insert(kKernelPriority.begin(), pair0);
  }
#endif
}

void UseALL() {
  UseCPU();
  UseMKLDNN();
  UseCUDA();
  UseCUDNN();
}

74 75
static DDim GetDims(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
76 77 78
  if (var == nullptr) {
    return DDim({-1});
  } else if (var->IsType<LoDTensor>()) {
79 80 81 82 83 84 85 86
    return var->Get<LoDTensor>().dims();
  } else if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().GetCompleteDims();
  } else {
    return DDim({-1});
  }
}

87
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
88
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
89
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
90 91
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
92
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
93 94
}

Y
Yu Yang 已提交
95 96
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
97
  auto it = inputs_.find(name);
98 99
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
100
  return it->second;
Y
Yan Chunwei 已提交
101 102
}

103
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
104
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
105
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
106 107
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
108
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
109 110
}

Y
Yu Yang 已提交
111 112
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
113
  auto it = outputs_.find(name);
114 115
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
116
  return it->second;
Y
Yan Chunwei 已提交
117 118
}

119
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
120
  std::stringstream ss;
Y
Yu Yang 已提交
121
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
122 123
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
124 125 126
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
127 128 129
      if (scope) {
        ss << "(" << GetDims(*scope, input.second[i]) << ")";
      }
Y
Yu Yang 已提交
130 131 132
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
133
    }
Y
Yu Yang 已提交
134
    ss << "]";
Y
Yu Yang 已提交
135 136
    ++it;
    if (it != inputs_.end()) {
137 138
      ss << ", ";
    }
Q
Qiao Longfei 已提交
139
  }
Y
Yu Yang 已提交
140
  ss << "}, outputs:{";
Y
Yu Yang 已提交
141 142
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
143 144 145
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
146 147 148
      if (scope) {
        ss << "(" << GetDims(*scope, output.second[i]) << ")";
      }
Y
Yu Yang 已提交
149 150 151
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
152
    }
Y
Yu Yang 已提交
153
    ss << "]";
Y
Yu Yang 已提交
154 155
    ++it;
    if (it != outputs_.end()) {
156 157
      ss << ", ";
    }
Q
Qiao Longfei 已提交
158
  }
Y
Yu Yang 已提交
159
  ss << "}.";
Q
Qiao Longfei 已提交
160 161 162
  return ss.str();
}

D
dongzhihong 已提交
163 164
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
165 166 167 168 169 170 171
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
172 173
}

Y
Yu Yang 已提交
174
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
175 176
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
177 178
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
179 180
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
181
}
182

Q
qijun 已提交
183 184
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
185
  for (auto& o : inputs_) {
Q
qijun 已提交
186 187 188 189 190 191
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
192 193 194 195 196 197 198 199 200 201
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
202
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
203 204

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
205
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
206 207 208 209 210 211 212 213 214
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
215 216
}

217 218 219
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
220
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
221 222 223

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
224
                   "Type %s's input %s is not set", Type(), in.name());
225 226 227 228
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
229
                   "Type %s's output %s is not set", Type(), out.name());
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

246 247 248 249
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

Q
QI JUN 已提交
250 251 252 253 254 255 256
static const Tensor* GetTensorFromVar(const Variable* var) {
  const Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = &(var->Get<LoDTensor>());
  } else if (var->IsType<SelectedRows>()) {
    t = &(var->Get<SelectedRows>().value());
  } else {
Y
Yang Yang 已提交
257 258
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
259 260 261 262 263 264 265 266 267 268 269
  }
  return t;
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
Y
Yang Yang 已提交
270 271
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
272 273 274 275
  }
  return t;
}

276
template <>
277
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
278
  auto* var = InputVar(name);
279
  return var == nullptr ? nullptr : GetTensorFromVar(var);
280 281 282
}

template <>
283
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
284 285 286 287
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
288 289 290 291 292
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
293 294 295 296
  return res;
}

template <>
297
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
298
  auto var = OutputVar(name);
Q
QI JUN 已提交
299
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
300 301 302
}

template <>
303
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
304 305 306 307
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
308 309
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
310 311
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
312
                                         : GetMutableTensorFromVar(var);
313
                 });
314 315 316
  return res;
}

Y
Yu Yang 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const override {
    return GetDim(op_.Input(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
409 410 411 412 413 414 415 416 417 418 419 420
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439

    // TODO(dzhwinter) : reuse ShareLoD in most operators.
    // Need to call ShareLayout explicitly in sequence related ops.
    // Shall we have a better method to shared info between in/out Tensor?
    out_tensor->set_layout(in_tensor.layout());
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
440 441
  }

442 443 444
  bool IsRuntime() const override { return true; }

 protected:
445 446 447 448 449 450 451
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
Y
Yang Yang 已提交
452 453
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
454 455 456 457 458 459 460 461 462 463
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
464 465
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
466 467 468
    }
  }

469
  proto::VarDesc::VarType GetVarType(const std::string& name) const override {
470 471 472 473 474
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
475 476 477 478 479
  const OperatorBase& op_;
  const Scope& scope_;
};

void OperatorWithKernel::Run(const Scope& scope,
D
dzhwinter 已提交
480
                             const platform::Place& place) const {
481 482
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
483 484
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto dev_ctx = pool.Get(place);
485 486 487 488 489

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
490 491
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
492 493
  }

D
dzhwinter 已提交
494
  ExecutionContext ctx(*this, scope, *dev_ctx);
495 496
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);

Q
qiaolongfei 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510
  OpKernelMap& kernels = kernels_iter->second;

  for (auto& candidate : kKernelPriority) {
    auto candidate_key =
        OpKernelType(expected_kernel_key.data_type_, std::get<0>(candidate),
                     expected_kernel_key.data_layout_, std::get<1>(candidate));

    if ((candidate_key == expected_kernel_key) ||
        (kernels.count(candidate_key))) {
      expected_kernel_key = candidate_key;
      break;
    }
  }

Q
qiaolongfei 已提交
511 512
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  Scope& new_scope = scope.NewScope();

  for (auto& var_name_item : this->Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      if (var && VarIsTensor(var)) {
        auto* tensor_in = GetTensorFromVar(var);
        if (tensor_in->IsInitialized()) {
          auto kernel_type_for_var = this->GetKernelTypeForVar(
              var_name_item.first, *tensor_in, expected_kernel_key);
          if (kernel_type_for_var != expected_kernel_key) {
            auto out_var_names = OutputVars(true);
            if (std::find(out_var_names.begin(), out_var_names.end(),
                          var_name) != out_var_names.end()) {
              PADDLE_THROW(
                  "var %s is both input and output, "
                  "does not support transform",
                  var_name);
            }
            VLOG(3) << "need to do transform for var " << var_name;
            auto* trans_var = new_scope.Var(var_name);
            auto* out = DataTransform(expected_kernel_key, kernel_type_for_var,
                                      *tensor_in);
            CopyVariableWithTensor(*var, *out, *trans_var);
          }
Q
QI JUN 已提交
538 539
        }
      }
540 541
    }
  }
Q
QI JUN 已提交
542

D
dzhwinter 已提交
543 544
  auto kernel_iter = kernels.find(expected_kernel_key);

Q
qiaolongfei 已提交
545 546
  kernel_iter->second->Compute(ExecutionContext(
      *this, new_scope, *pool.Get(expected_kernel_key.place_)));
Q
Qiao Longfei 已提交
547 548
}

549
proto::DataType OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
575
  return static_cast<proto::DataType>(data_type);
Y
Yu Yang 已提交
576
}
577

578 579 580 581 582 583 584 585 586 587 588
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
  return OpKernelType(expected_kernel_type.data_type_, tensor.place());
}

Q
Qiao Longfei 已提交
589
}  // namespace framework
L
liaogang 已提交
590
}  // namespace paddle