public.py 31.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright(c) 2020 PaddlePaddle Authors.All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0(the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http:  // www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from functools import reduce

import collections
import math
import os

import six
from paddle.fluid import core
from paddle.fluid.core import CommContext
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
from paddle.fluid.incubate.fleet.parameter_server.ir import vars_metatools
from paddle.fluid.incubate.fleet.parameter_server.ir.ps_dispatcher import RoundRobin, PSDispatcher

OP_NAME_SCOPE = "op_namescope"
CLIP_OP_NAME_SCOPE = "@CLIP"
STEP_COUNTER = "@PS_STEP_COUNTER@"
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
RPC_OP_ROLE_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleAttrName()
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize


def _get_lr_ops(program):
    lr_ops = []
    for index, op in enumerate(program.global_block().ops):
        role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
        if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                        role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                        int(OPT_OP_ROLE_ATTR_VALUE):
            lr_ops.append(op)
    return lr_ops


def is_sparse_op(op):
    if op.type == "lookup_table" and op.attr('is_sparse') is True and op.attr(
            'is_distributed') is False:
        return True

    if op.type == "distributed_lookup_table" and op.attr(
            'is_distributed') is False:
        return True

    return False


def is_distributed_sparse_op(op):
    if op.type == "lookup_table" and op.attr('is_distributed') is True:
        return True

    if op.type == "distributed_lookup_table" and op.attr(
            'is_distributed') is True:
        return True

    return False


def get_sparse_tablename(op):
    return op.input("W")[0]


def get_sparse_tablenames(program, is_distributed):
    tablenames = set()
    if is_distributed:
        for op in program.global_block().ops:
            if is_distributed_sparse_op(op):
                tablenames.add(get_sparse_tablename(op))
    else:
        for op in program.global_block().ops:
            if is_sparse_op(op):
                tablenames.add(get_sparse_tablename(op))
    return list(tablenames)


class MergedVariable:
    def __init__(self, merged, ordered, offsets):
        self.merged_var = merged
        self.ordered_vars = ordered
        self.offsets = offsets


class CompileTimeStrategy(object):
    def __init__(self, main_program, startup_program, strategy, role_maker):

        self.min_block_size = 8192

        self.origin_main_program = main_program
        self.origin_startup_program = startup_program

        self.strategy = strategy
        self.role_maker = role_maker

        self.origin_sparse_pairs = []
        self.origin_dense_pairs = []

        self.merged_variables_pairs = []
        self.merged_dense_pairs = []
        self.merged_sparse_pairs = []

        self.merged_variable_map = {}
        self.param_name_to_grad_name = {}
        self.grad_name_to_param_name = {}

        self.param_grad_ep_mapping = collections.OrderedDict()
        self.grad_param_mapping = collections.OrderedDict()

        self._build_var_distributed()

    def get_distributed_mode(self):
        trainer = self.strategy.get_trainer_runtime_config()
        return trainer.mode

    def is_sync_mode(self):
        trainer = self.strategy.get_trainer_runtime_config()
        return trainer.mode == DistributedMode.SYNC

    def is_geo_mode(self):
        trainer = self.strategy.get_trainer_runtime_config()
        return trainer.mode == DistributedMode.GEO

    def is_async_mode(self):
        trainer = self.strategy.get_trainer_runtime_config()
        return trainer.mode == DistributedMode.ASYNC

    def get_role_id(self):
        return self.role_maker.role_id()

    def get_trainers(self):
        return self.role_maker.worker_num()

    def get_ps_endpoint(self):
        return self.role_maker.get_pserver_endpoints()[self.get_role_id()]

    def get_ps_endpoints(self):
        return self.role_maker.get_pserver_endpoints()

    def get_origin_programs(self):
        return self.origin_main_program, self.origin_startup_program

    def get_origin_main_program(self):
        return self.origin_main_program

    def get_origin_startup_program(self):
        return self.origin_startup_program

    def get_sparse_varname_on_ps(self, is_distributed, endpoint=None):
        if not endpoint:
            endpoint = self.get_ps_endpoint()

        varnames = get_sparse_tablenames(self.get_origin_main_program(),
                                         is_distributed)
        ps_sparse_varnames = []
        for varname in varnames:
            tables = self.get_var_distributed(varname, True)
            for i in range(len(tables)):
                table, ep, _ = tables[i]
                if ep == endpoint:
                    ps_sparse_varnames.append(table)
        return ps_sparse_varnames

    def build_ctx(self,
                  vars,
                  mapping,
                  is_grad,
                  is_sparse,
                  is_send,
                  is_distributed=False):
        def get_grad_var_ep(slices):
            names = []
            eps = []
            sections = []

            for slice in slices:
                if self.is_geo_mode():
                    if is_send:
                        names.append("{}.delta".format(slice.name))
                    else:
                        names.append(slice.name)
                elif is_grad and self.is_sync_mode() and self.get_trainers(
                ) > 1:
                    names.append("{}.trainer_{}".format(slice.name,
                                                        self.get_role_id()))
                else:
                    names.append(slice.name)

                sections.append(slice.shape[0])

                for ep, pairs in self.param_grad_ep_mapping.items():
                    params, grads = pairs["params"], pairs["grads"]

                    for var in params + grads:
                        if slice.name == var.name:
                            eps.append(ep)
                            break
            return names, eps, sections

        if isinstance(vars, MergedVariable):
            name = vars.merged_var.name
            slices = mapping[name]
            names, eps, sections = get_grad_var_ep(slices)
            origin_varnames = [var.name for var in vars.ordered_vars]
        else:
            name = vars.name
            slices = mapping[name]
            names, eps, sections = get_grad_var_ep(slices)
            origin_varnames = [vars.name]

        trainer_id = self.get_role_id()
        aggregate = True
        ctx = CommContext(name, names, eps, sections, origin_varnames,
                          trainer_id, aggregate, is_sparse, is_distributed)
        return ctx

    def get_trainer_send_context(self):
        send_ctx = {}
        distibuted_varnames = get_sparse_tablenames(self.origin_main_program,
                                                    True)

        if not self.is_geo_mode():
            for merged in self.merged_dense_pairs:
                grad = merged[1]
                ctx = self.build_ctx(grad, self.grad_var_mapping, True, False,
                                     True)
                send_ctx[ctx.var_name()] = ctx

            for merged in self.merged_sparse_pairs:
                param = merged[0]
                grad = merged[1]

                param_name = param.merged_var.name

                is_distributed = True if param_name in distibuted_varnames else False

                ctx = self.build_ctx(grad, self.grad_var_mapping, True, True,
                                     True, is_distributed)
                send_ctx[ctx.var_name()] = ctx

            if self.is_async_mode():
                name, ctx = self._step_ctx()
                send_ctx[name] = ctx
        else:
            for pairs in self.origin_sparse_pairs:
                param, grad = pairs
                param_name = param.name
                is_distributed = True if param_name in distibuted_varnames else False

                param_ctx = self.build_ctx(param, self.param_var_mapping, False,
                                           True, True, is_distributed)
                grad_ctx = self.build_ctx(grad, self.grad_var_mapping, True,
                                          True, True, is_distributed)

                ctx = CommContext(param_ctx.var_name(),
                                  param_ctx.split_varnames(),
                                  param_ctx.split_endpoints(),
                                  param_ctx.sections(),
                                  grad_ctx.origin_varnames(),
                                  param_ctx.trainer_id(),
                                  param_ctx.aggregate(),
                                  param_ctx.is_sparse(),
                                  param_ctx.is_distributed())

                send_ctx[ctx.var_name()] = ctx
            name, ctx = self._step_ctx()
            send_ctx[name] = ctx
        return send_ctx

    def get_communicator_send_context(self):
        send_ctx = {}
        distibuted_varnames = get_sparse_tablenames(self.origin_main_program,
                                                    True)

        if self.is_geo_mode():
            for pairs in self.merged_dense_pairs:
                param = pairs[0]
                ctx = self.build_ctx(param, self.param_var_mapping, False,
                                     False, True)
                send_ctx[ctx.var_name()] = ctx

            for pairs in self.merged_sparse_pairs:
                param = pairs[0]
                param_name = param.merged_var.name
                is_distributed = True if param_name in distibuted_varnames else False

                ctx = self.build_ctx(param, self.param_var_mapping, False, True,
                                     True, is_distributed)
                send_ctx[ctx.var_name()] = ctx
            name, ctx = self._step_ctx()
            send_ctx[name] = ctx
        else:
            for merged in self.merged_dense_pairs:
                grad = merged[1]
                ctx = self.build_ctx(grad, self.grad_var_mapping, True, False,
                                     True)
                send_ctx[ctx.var_name()] = ctx

            for merged in self.merged_sparse_pairs:
                param, grad = merged
                param_name = param.merged_var.name

                is_distributed = True if param_name in distibuted_varnames else False

T
tangwei12 已提交
332
                ctx = self.build_ctx(grad, self.grad_var_mapping, True, True,
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
                                     True, is_distributed)
                send_ctx[ctx.var_name()] = ctx

            name, ctx = self._step_ctx()
            send_ctx[name] = ctx
        return send_ctx

    def get_communicator_recv_context(self, recv_type=1):
        # recv_type
        # 1 : DENSE 2. SPARSE 3. DISTRIBUTED 4. ALL
        distibuted_varnames = get_sparse_tablenames(self.origin_main_program,
                                                    True)
        sparse_varnames = []
        for pairs in self.origin_sparse_pairs:
            param, grad = pairs
            sparse_varnames.append(param.name)

        dense_recv_ctx = {}
        sparse_recv_ctx = {}
        distributed_recv_ctx = {}

        for merged in self.merged_variables_pairs:
            params = merged[0]
            if params.merged_var.name in sparse_varnames:
                continue

            ctx = self.build_ctx(params, self.param_var_mapping, False, False,
                                 False)
            dense_recv_ctx[ctx.var_name()] = ctx

        for pairs in self.origin_sparse_pairs:
            param, grad = pairs

            if param.name in distibuted_varnames:
                ctx = self.build_ctx(param, self.param_var_mapping, False, True,
                                     False, True)
                distributed_recv_ctx[ctx.var_name()] = ctx
            else:
                ctx = self.build_ctx(param, self.param_var_mapping, False, True,
                                     False, False)
                sparse_recv_ctx[ctx.var_name()] = ctx

        if recv_type == 1:
            return dense_recv_ctx
        if recv_type == 2:
            return sparse_recv_ctx
        if recv_type == 3:
            return distributed_recv_ctx
        if recv_type == 4:
            dense_recv_ctx.update(sparse_recv_ctx)
            dense_recv_ctx.update(distributed_recv_ctx)
            return dense_recv_ctx
        assert ValueError(
            "recv_type can only be 1/2/3/4, 1 : DENSE 2. SPARSE 3. DISTRIBUTED 4. ALL"
        )

    def get_server_runtime_config(self):
        return self.strategy.get_server_runtime_config()

    def get_var_distributed(self, varname, is_param):
        var_distributed = []
        offset = 0
        if is_param:
            params = self.param_var_mapping[varname]
            param_varnames = [var.name for var in params]
            for ep, pairs in self.param_grad_ep_mapping.items():
                for p in pairs["params"]:
                    if p.name in param_varnames:
                        offset += p.shape[0]
                        var_distributed.append((p.name, ep, p.shape[0]))
        else:
            grads = self.grad_var_mapping[varname]
            grad_varnames = [var.name for var in grads]
            for ep, pairs in self.param_grad_ep_mapping.items():
                for g in pairs["grads"]:
                    if g.name in grad_varnames:
                        var_distributed.append((g.name, ep, g.shape[0]))
        return var_distributed

    def _step_ctx(self):
        name = STEP_COUNTER
        trainer_id = self.get_role_id()
        endpoints = self.get_ps_endpoints()
        sections = [1] * len(endpoints)
        names = [name] * len(endpoints)
        ctx = CommContext(name, names, endpoints, sections, [name], trainer_id,
                          True, False, False)
        return name, ctx

    def _create_vars_from_blocklist(self, block_list):
        """
        Create vars for each split.
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
        Args:
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
        Returns:
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
                from original var name to each var split.
        """

        # varname->[(block_id, current_block_size)]
        block_map = collections.OrderedDict()
        var_mapping = collections.OrderedDict()

        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if varname not in block_map:
                block_map[varname] = []
            block_map[varname].append((int(offset), int(size)))

        for varname, split in six.iteritems(block_map):
            orig_var = self.merged_variable_map[varname]

            if len(split) == 1:
                var_mapping[varname] = [orig_var]
                self.var_distributed.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=orig_var,
                    block_id=0,
                    offset=0,
                    is_slice=False,
                    vtype="Param")
            else:
                var_mapping[varname] = []
                orig_shape = orig_var.shape
                orig_dim1_flatten = 1

                if len(orig_shape) >= 2:
                    orig_dim1_flatten = reduce(lambda x, y: x * y,
                                               orig_shape[1:])

                for i, block in enumerate(split):
                    size = block[1]
                    rows = size // orig_dim1_flatten
                    splited_shape = [rows]
                    if len(orig_shape) >= 2:
                        splited_shape.extend(orig_shape[1:])

                    new_var_name = "%s.block%d" % (varname, i)
                    slice_var = vars_metatools.VarStruct(
                        name=new_var_name,
                        shape=splited_shape,
                        dtype=orig_var.dtype,
                        type=orig_var.type,
                        lod_level=orig_var.lod_level,
                        persistable=False)
                    var_mapping[varname].append(slice_var)

                    self.var_distributed.add_distributed_var(
                        origin_var=orig_var,
                        slice_var=slice_var,
                        block_id=i,
                        offset=-1,
                        is_slice=False,
                        vtype="Param")

        return var_mapping

    def _dispatcher(self):
        ps_dispatcher = RoundRobin(self.get_ps_endpoints())
        ps_dispatcher.reset()
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))

        sparse_gradnames = [grad.name for _, grad in self.origin_sparse_pairs]

        for grad_varname, splited_vars in grad_var_mapping_items:
            if grad_varname in sparse_gradnames:
                continue

            send_vars = []
            for _, var in enumerate(splited_vars):
                send_vars.append(var)

            recv_vars = []
            for _, var in enumerate(send_vars):
                recv_vars.append(self.grad_param_mapping[var])

            eps = ps_dispatcher.dispatch(recv_vars)

            for i, ep in enumerate(eps):
                self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
                self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])

        for grad_varname, splited_vars in grad_var_mapping_items:
            if grad_varname not in sparse_gradnames:
                continue

            ps_dispatcher.reset()

            send_vars = []
            for _, var in enumerate(splited_vars):
                send_vars.append(var)

            recv_vars = []
            for _, var in enumerate(send_vars):
                recv_vars.append(self.grad_param_mapping[var])

            eps = ps_dispatcher.dispatch(recv_vars)

            for i, ep in enumerate(eps):
                self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
                self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])

    def _slice_variable(self,
                        var_list,
                        slice_count,
                        min_block_size,
                        uniform=False):
        """
        We may need to split dense tensor to one or more blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.

        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        minimum block size 8K elements (maybe 16bit or 32bit or 64bit).

        Args:
            var_list (list): List of variables.
            slice_count (int): Numel of count that variables will be sliced, which
                could be the pserver services' count.
            min_block_size (int): Minimum split block size.
        Returns:
            blocks (list[(varname, block_id, current_block_size)]): A list
                of VarBlocks. Each VarBlock specifies a shard of the var.
        """
        blocks = []
        for var in var_list:
            if not uniform:
                var_numel = reduce(lambda x, y: x * y, var.shape)

                split_count = 1

                # if min_block_size == -1:
                #     split_count = 1
                # else:
                #     split_count = slice_count
                #     max_pserver_count = int(
                #         math.floor(var_numel / float(min_block_size)))
                #     if max_pserver_count == 0:
                #         max_pserver_count = 1
                #     if max_pserver_count < slice_count:
                #         split_count = max_pserver_count
                block_size = int(math.ceil(var_numel / float(split_count)))

                if len(var.shape) >= 2:
                    # align by dim1(width)
                    dim1 = reduce(lambda x, y: x * y, var.shape[1:])
                    remains = block_size % dim1
                    if remains != 0:
                        block_size += dim1 - remains
                        # update split_count after aligning
                split_count = int(math.ceil(var_numel / float(block_size)))
                for block_id in range(split_count):
                    curr_block_size = min(block_size, var_numel - (
                        (block_id) * block_size))
                    block = vars_metatools.VarBlock(var.name, block_id,
                                                    curr_block_size)
                    blocks.append(str(block))
            else:
                block_size = var.shape[0] / slice_count
                remainder = var.shape[0] % slice_count

                if block_size == 0:
                    dim0s = [block_size] * remainder
                else:
                    dim0s = [block_size] * slice_count
                for i in range(remainder):
                    dim0s[i] = dim0s[i] + 1

                dim1 = reduce(lambda x, y: x * y, var.shape[1:])

                for block_id in range(len(dim0s)):
                    numel = dim0s[block_id] * dim1
                    block = vars_metatools.VarBlock(var.name, block_id, numel)
                    blocks.append(str(block))
        return blocks

    def _get_param_grad_blocks(self, pairs, min_block_size, uniform=False):
        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in pairs:
            # todo(tangwei12) skip parameter marked not trainable
            # if type(p) == Parameter and p.trainable == False:
            # continue
            p = p.merged_var
            g = g.merged_var

            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

                # when we slice var up into blocks, we will slice the var according to
                # pserver services' count. A pserver may have two or more listening ports.
        grad_blocks = self._slice_variable(grad_list,
                                           len(self.get_ps_endpoints()),
                                           min_block_size, uniform)

        param_blocks = self._slice_variable(param_list,
                                            len(self.get_ps_endpoints()),
                                            min_block_size, uniform)
        return param_blocks, grad_blocks

    def _var_slice_and_distribute(self):
        # update these mappings for further transpile:
        # 1. param_var_mapping : param var name->[split params vars]
        # 2. grad_var_mapping : grad var name->[split grads vars]
        # 3. grad_param_mapping : grad.blockx->param.blockx
        # 4. param_grad_ep_mapping : ep->{"params" : [], "grads" : [] }

        dps, dgs = self._get_param_grad_blocks(self.merged_dense_pairs, -1,
                                               False)
        sps, sgs = self._get_param_grad_blocks(self.merged_sparse_pairs,
                                               self.min_block_size, True)

        param_blocks = dps + sps
        grad_blocks = dgs + sgs

        assert (len(grad_blocks) == len(param_blocks))

        # origin_param_name->[splited_param_vars]
        self.param_var_mapping = self._create_vars_from_blocklist(param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(grad_blocks)

        # dict(grad_splited_var->param_splited_var)
        self.grad_param_mapping = collections.OrderedDict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
                self.param_var_mapping[p_name][int(p_bid)]

        print_maps = {}
        for k, v in self.grad_param_mapping.items():
            print_maps[str(k)] = str(v)

        # create mapping of endpoint->split var to create pserver side program
        self.param_grad_ep_mapping = collections.OrderedDict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.get_ps_endpoints()
        ]

    def _build_var_distributed(self):
        self.var_distributed = vars_metatools.VarsDistributed()

        sparse_pairs, dense_pairs = self.get_param_grads()
        origin_for_sparse = []
        origin_for_dense = []
        param_name_grad_name = dict()
        grad_name_to_param_name = dict()

        for param, grad in sparse_pairs:
            param = vars_metatools.create_var_struct(param)
            grad = vars_metatools.create_var_struct(grad)
            origin_for_sparse.append((param, grad))

        for param, grad in dense_pairs:
            param = vars_metatools.create_var_struct(param)
            grad = vars_metatools.create_var_struct(grad)
            origin_for_dense.append((param, grad))

        for dense_pair in origin_for_dense:
            param, grad = dense_pair

            m_param = MergedVariable(param, [param], [0])
            m_grad = MergedVariable(grad, [grad], [0])
            self.merged_variables_pairs.append((m_param, m_grad))
            self.merged_dense_pairs.append((m_param, m_grad))

        for sparse_pair in origin_for_sparse:
            param, grad = sparse_pair

            m_param = MergedVariable(param, [param], [0])
            m_grad = MergedVariable(grad, [grad], [0])
            self.merged_variables_pairs.append((m_param, m_grad))
            self.merged_sparse_pairs.append((m_param, m_grad))

        for merged in self.merged_variables_pairs:
            m_param, m_grad = merged
            self.merged_variable_map[
                m_param.merged_var.name] = m_param.merged_var
            self.merged_variable_map[m_grad.merged_var.name] = m_grad.merged_var

        param_merges = []
        param_merges.extend(origin_for_sparse)
        param_merges.extend(origin_for_dense)

        for param, grad in param_merges:
            param_name_grad_name[param.name] = grad.name
            grad_name_to_param_name[grad.name] = param.name

        self.origin_sparse_pairs = origin_for_sparse
        self.origin_dense_pairs = origin_for_dense
        self.param_name_to_grad_name = param_name_grad_name
        self.grad_name_to_param_name = grad_name_to_param_name

        sparse_pair_map = collections.OrderedDict()

        for pair in self.origin_sparse_pairs + self.origin_dense_pairs:
            param, grad = pair
            sparse_pair_map[param.name] = str(param)
            sparse_pair_map[grad.name] = str(grad)

        self._var_slice_and_distribute()
        self._dispatcher()

    def get_param_grads(self):
        origin_program = self.origin_main_program

        def _get_params_grads(sparse_varnames):
            block = origin_program.global_block()

            dense_param_grads = []
            sparse_param_grads = []

            optimize_params = set()
            origin_var_dict = origin_program.global_block().vars
            role_id = int(core.op_proto_and_checker_maker.OpRole.Backward)
            for op in block.ops:
                if _is_opt_role_op(op):
                    # delete clip op from opt_ops when run in Parameter Server mode
                    if OP_NAME_SCOPE in op.all_attrs() \
                            and CLIP_OP_NAME_SCOPE in op.attr(OP_NAME_SCOPE):
                        op._set_attr("op_role", role_id)
                        continue
                    if op.attr(OP_ROLE_VAR_ATTR_NAME):
                        param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                        grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                        if param_name not in optimize_params:
                            optimize_params.add(param_name)
                            param_grad = (origin_var_dict[param_name],
                                          origin_var_dict[grad_name])

                            if param_name in sparse_varnames:
                                sparse_param_grads.append(param_grad)
                            else:
                                dense_param_grads.append(param_grad)
            return sparse_param_grads, dense_param_grads

        def _get_sparse_varnames():
            varnames = []
            op_types = {"lookup_table": "W"}
            for op in origin_program.global_block().ops:
                if op.type in op_types.keys() \
                        and op.attr('remote_prefetch') is True:
                    param_name = op.input(op_types[op.type])[0]
                    varnames.append(param_name)

            return list(set(varnames))

        sparse_varnames = _get_sparse_varnames()
        sparse_param_grads, dense_param_grads = _get_params_grads(
            sparse_varnames)

        return sparse_param_grads, dense_param_grads


def _is_opt_role_op(op):
    # NOTE : depend on oprole to find out whether this op is for
    # optimize
    op_maker = core.op_proto_and_checker_maker
    optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
    if op_maker.kOpRoleAttrName() in op.attr_names and \
                    int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
        return True
    return False


def _get_optimize_ops(_program):
    block = _program.global_block()
    opt_ops = []
    for op in block.ops:
        if _is_opt_role_op(op):
            # delete clip op from opt_ops when run in Parameter Server mode
            if OP_NAME_SCOPE in op.all_attrs() \
                    and CLIP_OP_NAME_SCOPE in op.attr(OP_NAME_SCOPE):
                op._set_attr(
                    "op_role",
                    int(core.op_proto_and_checker_maker.OpRole.Backward))
                continue
            opt_ops.append(op)
    return opt_ops


def _get_varname_parts(varname):
    # returns origin, blockid, trainerid
    orig_var_name = ""
    trainer_part = ""
    block_part = ""
    trainer_idx = varname.find(".trainer_")
    if trainer_idx >= 0:
        trainer_part = varname[trainer_idx + 1:]
    else:
        trainer_idx = len(varname)
    block_index = varname.find(".block")
    if block_index >= 0:
        block_part = varname[block_index + 1:trainer_idx]
    else:
        block_index = len(varname)
    orig_var_name = varname[0:min(block_index, trainer_idx)]
    return orig_var_name, block_part, trainer_part


def _orig_varname(varname):
    orig, _, _ = _get_varname_parts(varname)
    return orig