common_dense_table.cc 13.4 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/distributed/ps/table/common_dense_table.h"
16 17

#include "paddle/fluid/platform/enforce.h"
T
tangwei12 已提交
18 19 20 21

namespace paddle {
namespace distributed {

Z
zhaocaibei123 已提交
22 23
int FLAGS_pslib_table_save_max_retry_dense = 3;

T
tangwei12 已提交
24 25 26 27 28 29 30 31 32 33
void CommonDenseTable::create_initializer(const std::string& attr,
                                          const std::string& name) {
  auto slices = string::split_string<std::string>(attr, "&");

  if (slices[0] == "gaussian_random") {
    initializers_[name] = new GaussianInitializer(slices);
  } else if (slices[0] == "fill_constant") {
    initializers_[name] = new FillConstantInitializer(slices);
  } else if (slices[0] == "uniform_random") {
    initializers_[name] = new UniformInitializer(slices);
C
Chengmo 已提交
34 35
  } else if (slices[0] == "truncated_gaussian_random") {
    initializers_[name] = new TruncatedGaussianInitializer(slices);
T
tangwei12 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
  } else {
    PADDLE_THROW(
        platform::errors::InvalidArgument("%s can not be supported", name));
  }
}

int32_t CommonDenseTable::initialize() {
  _shards_task_pool.resize(task_pool_size_);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
  }

  sync = _config.common().sync();
  VLOG(1) << "table " << _config.common().table_name() << " is sync: " << sync;
50
  _global_lr = new float(1.0);
T
tangwei12 已提交
51 52 53 54 55 56 57 58 59 60

  initialize_value();
  initialize_optimizer();
  return 0;
}

int32_t CommonDenseTable::initialize_value() {
  auto common = _config.common();
  int size = static_cast<int>(common.params().size());
  values_.resize(size);
Z
zhaocaibei123 已提交
61
  total_dim_ = 0;
T
tangwei12 已提交
62 63 64 65 66 67 68
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
    if (varname == "Param") {
      param_dim_ = dim;
      param_idx_ = x;
    }
Z
zhaocaibei123 已提交
69

T
tangwei12 已提交
70
    auto& initializer = common.initializers()[x];
Z
zhaocaibei123 已提交
71
    total_dim_ += dim;
T
tangwei12 已提交
72 73 74 75 76 77 78 79 80 81

    create_initializer(initializer, varname);
    values_[x].resize(dim);
    names_index_[varname] = x;

    for (int y = 0; y < dim; ++y) {
      values_[x][y] = initializers_[varname]->GetValue();
    }
  }

Z
zhaocaibei123 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  fixed_len_params_dim_ = 0;
  for (int x = 0; x < size; ++x) {
    auto& dim = common.dims()[x];
    if (dim != param_dim_) {
      fixed_len_params_dim_ += dim;
    } else {
      param_col_ids_.push_back(x);
    }
  }
  if (_config.common().name() == "adam_d2sum") {
    param_col_ids_.insert(param_col_ids_.begin() + 1, -1);
  }

  VLOG(1) << "CommonDenseTable::initialize_value total dim: " << total_dim_
          << " fixed_len_params_dim: " << fixed_len_params_dim_;

T
tangwei12 已提交
98 99 100 101 102 103 104 105 106 107 108
  pull_reservoir_ = ReservoirValue<float>(param_dim_);
  return 0;
}

int32_t CommonDenseTable::initialize_optimizer() {
  auto common = _config.common();
  auto name = common.name();
  auto attrs = common.attributes();

  if (name == "sgd") {
    optimizer_ = std::make_shared<DSGD>(common, &values_);
109
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
110 111
  } else if (name == "adam") {
    optimizer_ = std::make_shared<DAdam>(common, &values_);
112
    optimizer_->set_global_lr(_global_lr);
Z
zhaocaibei123 已提交
113 114 115
  } else if (name == "adam_d2sum") {
    optimizer_ = std::make_shared<DAdamD2Sum>(common, &values_);
    // optimizer_->set_global_lr(_global_lr);  //no use
T
tangwei12 已提交
116 117 118 119 120
  } else if (name == "sum") {
    optimizer_ = std::make_shared<DSUM>(common, &values_);
  } else {
    VLOG(0) << "init optimizer failed";
  }
121
  VLOG(3) << "init optimizer " << name << " done";
T
tangwei12 已提交
122 123 124
  return 0;
}

125 126 127 128 129 130
int32_t CommonDenseTable::set_global_lr(float* lr) {
  _global_lr = lr;
  optimizer_->set_global_lr(_global_lr);
  return 0;
}

Y
yaoxuefeng 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
int32_t CommonDenseTable::Pull(TableContext& context) {
  CHECK(context.value_type == Dense);
  float* pull_values = context.pull_context.values;
  return pull_dense(pull_values, context.num);
}

int32_t CommonDenseTable::Push(TableContext& context) {
  CHECK(context.value_type == Dense);
  if (context.pull_context.values != nullptr) {
    const float* values = context.push_context.values;
    return push_dense(values, context.num);
  }
  return 0;
}

T
tangwei12 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
int32_t CommonDenseTable::pull_dense(float* pull_values, size_t num) {
  std::copy(values_[param_idx_].begin(), values_[param_idx_].end(),
            pull_values);
  return 0;
}

int32_t CommonDenseTable::push_dense_param(const float* values, size_t num) {
  PADDLE_ENFORCE_GE(
      num, param_dim_,
      paddle::platform::errors::InvalidArgument(
          "update desne param numel expected %d, but got %d", param_dim_, num));
  std::copy_n(values, param_dim_, values_[param_idx_].begin());
  return 0;
}

int32_t CommonDenseTable::pour() {
T
tangwei12 已提交
162
  pull_reservoir_.avg();
T
tangwei12 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
  _push_dense(pull_reservoir_.values.data(), pull_reservoir_.values.size());
  pull_reservoir_.reset();
  return 0;
}

int32_t CommonDenseTable::push_dense(const float* values, size_t num) {
  if (sync) {
    std::future<int> task =
        _shards_task_pool[0]->enqueue([this, &values]() -> int {
          pull_reservoir_.add(values, param_dim_);
          return 0;
        });
    task.wait();
  } else {
    _push_dense(values, num);
  }
  return 0;
}

int32_t CommonDenseTable::_push_dense(const float* values, size_t num) {
  PADDLE_ENFORCE_GE(
      num, param_dim_,
      paddle::platform::errors::InvalidArgument(
          "update desne numel expected %d, but got %d", param_dim_, num));

  std::vector<int> buckets = bucket(param_dim_, task_pool_size_);
  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &buckets, &values]() -> int {
          auto begin = buckets[shard_id];
          auto end = buckets[shard_id + 1];
          optimizer_->update(values, param_dim_, begin, end);
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
Z
zhaocaibei123 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  VLOG(2) << "debug CommonDenseTable::_push_dense done";
  return 0;
}

int32_t CommonDenseTable::load(const std::string& path,
                               const std::string& param) {
  if (param_dim_ <= 0) {
    return 0;
  }
  std::string table_path = table_dir(path);
  auto file_list = _afs_client.list(table_path);
  std::sort(file_list.begin(), file_list.end());
  for (auto ff : file_list) {
    VLOG(1) << "load dense table file list: " << ff;
  }
  size_t dim_num_per_file = _config.accessor().fea_dim() / file_list.size() + 1;
  // param_dim_ in last node != _config.accesor().fea_dim() / _shard_num + 1
  size_t dim_num_per_shard = _value_accesor->fea_dim() / _shard_num + 1;
  size_t start_dim_idx = dim_num_per_shard * _shard_idx;
  size_t start_file_idx = start_dim_idx / dim_num_per_file;
  size_t end_file_idx = (start_dim_idx + param_dim_) / dim_num_per_file;
  end_file_idx =
      end_file_idx < file_list.size() ? end_file_idx : file_list.size() - 1;
  VLOG(2) << "load dense table start_file_idx: " << start_file_idx
          << " end_file_idx: " << end_file_idx;

  int load_param = atoi(param.c_str());
  FsChannelConfig channel_config;

  channel_config.converter = _value_accesor->converter(load_param).converter;
  channel_config.deconverter =
      _value_accesor->converter(load_param).deconverter;
  bool is_read_failed = false;
  int err_no = 0;
  int retry_num = 0;
  do {
    is_read_failed = false;
    try {
      size_t dim_idx = 0;
      float data_buffer[5];
      float* data_buff_ptr = data_buffer;
      std::string line_data;
      int size = static_cast<int>(values_.size());
      auto common = _config.common();

      for (int i = start_file_idx; i < end_file_idx + 1; ++i) {
        channel_config.path = file_list[i];
        err_no = 0;
        auto read_channel = _afs_client.open_r(channel_config, 0, &err_no);
        size_t file_start_idx = start_dim_idx - i * dim_num_per_file;

        // not all file contains param and the length of last file containing
        // param may not equal to others
        size_t file_dim_idx = 0;
        for (; file_dim_idx < dim_num_per_file; ++file_dim_idx) {
          if (read_channel->read_line(line_data) != 0) {
            break;
          }
          if (dim_idx >= param_dim_) {
            break;
          }
          if (file_dim_idx < file_start_idx) {
            continue;
          }
          auto str_len =
              paddle::string::str_to_float(line_data.data(), data_buff_ptr);
          CHECK(str_len == param_col_ids_.size())
              << "expect " << param_col_ids_.size() << " float, but got "
              << str_len;
          for (size_t col_idx = 0; col_idx < str_len; ++col_idx) {
            if (param_col_ids_[col_idx] < 0) {
              continue;
            }
            values_[param_col_ids_[col_idx]][dim_idx] = data_buffer[col_idx];
            VLOG(2) << "CommonDenseTable::load param x: "
                    << param_col_ids_[col_idx] << " y: " << dim_idx
                    << " value: " << values_[param_col_ids_[col_idx]][dim_idx]
                    << " line " << file_dim_idx;
          }
          ++dim_idx;
        }
        read_channel->close();
        VLOG(1) << "DownpourDenseTable load done " << channel_config.path
                << " file_start_idx: " << file_start_idx
                << " dim_idx: " << dim_idx;
        if (err_no == -1) {
          if (retry_num > FLAGS_pslib_table_save_max_retry_dense) {
            LOG(ERROR) << "DownpourDenseTable load failed reach max limit!";
            exit(-1);
          }
          ++retry_num;
          --i;
          LOG(ERROR)
              << "DownpourDenseTable load failed after read , retry it! path:"
              << channel_config.path << ", retry_num=" << retry_num;
          continue;
        }
        retry_num = 0;
        start_dim_idx += file_dim_idx - file_start_idx;
        LOG(INFO) << "DownpourDenseTable load success, path:"
                  << channel_config.path;
      }
    } catch (...) {
      is_read_failed = true;
      LOG(ERROR) << "DownpourDenseTable load failed, retry it! path:"
                 << channel_config.path;
    }
  } while (is_read_failed);
T
tangwei12 已提交
312 313 314
  return 0;
}

Z
zhaocaibei123 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
int32_t CommonDenseTable::save(const std::string& path,
                               const std::string& param) {
  int save_param = atoi(param.c_str());
  uint32_t feasign_size;
  VLOG(0) << "CommonDenseTable::save path " << path;

  FsChannelConfig channel_config;
  if (_config.compress_in_save()) {
    channel_config.path = paddle::string::format_string(
        "%s/part-%03d.gz", table_dir(path).c_str(), _shard_idx);
  } else {
    channel_config.path = paddle::string::format_string(
        "%s/part-%03d", table_dir(path).c_str(), _shard_idx);
  }
  _afs_client.remove(channel_config.path);
  channel_config.converter = _value_accesor->converter(save_param).converter;
  channel_config.deconverter =
      _value_accesor->converter(save_param).deconverter;

  bool is_write_failed = false;
  std::vector<std::vector<std::string>> result_buffer_param(
      param_dim_, std::vector<std::string>());
  std::vector<std::string> result_buffer_fixed_len;
  result_buffer_fixed_len.reserve(fixed_len_params_dim_);

  auto common = _config.common();
  int size = static_cast<int>(common.params().size());
  std::ostringstream os;
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
    VLOG(0) << "CommonDenseTable::save dim " << x << " size: " << dim;
    for (int y = 0; y < dim; ++y) {
      os.clear();
      os.str("");
      os << values_[x][y];
      if (dim == param_dim_) {
        result_buffer_param[y].emplace_back(std::move(os.str()));
      } else {
        result_buffer_fixed_len.emplace_back(std::move(os.str()));
      }
    }
  }

  int retry_num = 0;
  int err_no = 0;
  do {
    err_no = 0;
    is_write_failed = false;
    feasign_size = 0;
    // 40M
    auto write_channel =
        _afs_client.open_w(channel_config, 1024 * 1024 * 40, &err_no);
    for (auto& t : result_buffer_param) {
      if (_config.common().name() == "adam_d2sum") {
        t.insert(t.begin() + 1, "0");  // avg_w
      }
      if (0 !=
          write_channel->write_line(paddle::string::join_strings(t, ' '))) {
        ++retry_num;
        is_write_failed = true;
        LOG(ERROR) << "DownpourDenseTable save failed, retry it! "
                      "path:"
                   << channel_config.path << ", retry_num=" << retry_num;
        break;
      }
    }

    ++feasign_size;
    write_channel->close();
    if (err_no == -1) {
      ++retry_num;
      is_write_failed = true;
      LOG(ERROR) << "DownpourDenseTable save failed after write, retry it! "
                 << "path:" << channel_config.path
                 << ", retry_num=" << retry_num;
    }
    if (is_write_failed) {
      _afs_client.remove(channel_config.path);
    }
    if (retry_num >
        paddle::distributed::FLAGS_pslib_table_save_max_retry_dense) {
      LOG(ERROR) << "DownpourDenseTable save failed reach max limit!";
      exit(-1);
    }
  } while (is_write_failed);
  LOG(INFO) << "DownpourDenseTable save success, path:" << channel_config.path;
  return feasign_size;
}

T
tangwei12 已提交
405 406
}  // namespace distributed
}  // namespace paddle