test_conv_shift_op.py 1.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
Markus Kliegl 已提交
15 16
import unittest
import numpy as np
17
from .op_test import OpTest
M
Markus Kliegl 已提交
18 19 20 21 22 23 24


def conv_shift_forward(x, y):
    out = np.zeros_like(x)
    M = x.shape[1]
    N = y.shape[1]
    y_half_width = (N - 1) / 2
25 26
    for i in range(M):
        for j in range(N):
M
Markus Kliegl 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
            out[:, i] += x[:, (i + j + M - y_half_width) % M] * y[:, j]
    return out


class TestConvShiftOp(OpTest):
    def setUp(self):
        self.op_type = "conv_shift"

        batch_size = 4
        x_dim = 17
        y_dim = 3  # must be odd and <= x_dim
        x = np.random.random((batch_size, x_dim)).astype("float32")
        y = np.random.random((batch_size, y_dim)).astype("float32")
        self.inputs = {'X': x, 'Y': y}

        out = conv_shift_forward(x, y)
        self.outputs = {'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)

    def test_check_grad_ignore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))

    def test_check_grad_ignore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))


if __name__ == '__main__':
    unittest.main()