memcpy_op.cc 5.2 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/memcpy_op.h"

#include <string>

namespace paddle {
namespace framework {
class OpDesc;
22 23 24
class InferShapeContext;
template <typename T>
class EmptyGradOpMaker;
J
JZ-LIANG 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

namespace paddle {
namespace operators {

class MemcpyOp : public framework::OperatorWithKernel {
 public:
  MemcpyOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto type = ctx->GetInputsVarType("X")[0];
    if (type == framework::proto::VarType::SELECTED_ROWS ||
        type == framework::proto::VarType::LOD_TENSOR) {
      ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
      if (type == framework::proto::VarType::LOD_TENSOR) {
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }

 protected:
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
  }
};

class MemcpyInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SyncTypeAndDataType("X", "Out");
  }
};

class MemcpyKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
    if (x == nullptr) {
      return;
    }
    PADDLE_ENFORCE_EQ(
        ctx.HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of memcpy_op is not found."));
    auto *out = ctx.OutputVar("Out");
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
    auto dst_place_type = ctx.Attr<int>("dst_place_type");
    framework::VisitVarType(*x, MemcpyFunctor(out, dev_ctx, dst_place_type));
  }
};

class MemcpyOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(LoDTensor) The input variable ");
    AddOutput("Out",
              "(LoDTensor) The type of output "
              "is the same as input X.");
    AddAttr<int>("dst_place_type",
                 "Determine the dst place of tensor copy. "
                 "By Now it ONLY support CUDAPlace and CUDAPinnedPlace. Other "
                 "place type is Unimplemented and will cause ERROR."
                 "0: dst is on CPUPlace. "
                 "1: dst is on CUDAPlace. "
                 "2: dst is on CUDAPinnedPlace. "
                 "3: dst is on XPUPlace. ");
    AddComment(R"DOC(
    Memcpy Operator.
    By now, it ONLY supports the memcopy between CUDAPinnedPlace and CUDAPlace,
    and used as an internal op by Recompute-Offload.
    You would have to update it if you want other more capacities.

Out = X,  when type in [LoDTensor]
raise error if the type is not listed above.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OPERATOR(
    memcpy, ops::MemcpyOp, ops::MemcpyOpProtoMaker, ops::MemcpyInferVarType,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL_FUNCTOR(memcpy, float, ops::MemcpyKernel, double,
                               ops::MemcpyKernel, int, ops::MemcpyKernel,
                               int64_t, ops::MemcpyKernel, bool,
                               ops::MemcpyKernel, plat::float16,
                               ops::MemcpyKernel);

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR(memcpy, float, ops::MemcpyKernel, double,
                                ops::MemcpyKernel, int, ops::MemcpyKernel,
                                int64_t, ops::MemcpyKernel, bool,
                                ops::MemcpyKernel, plat::float16,
                                ops::MemcpyKernel);
#endif