data_feed.h 24.8 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

J
jiaqi 已提交
17 18 19 20 21
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

W
Wang Guibao 已提交
22
#include <fstream>
23
#include <future>  // NOLINT
W
Wang Guibao 已提交
24 25
#include <memory>
#include <mutex>  // NOLINT
26
#include <sstream>
W
Wang Guibao 已提交
27 28
#include <string>
#include <thread>  // NOLINT
29
#include <unordered_map>
30
#include <unordered_set>
31
#include <utility>
32
#include <vector>
W
Wang Guibao 已提交
33

J
jiaqi 已提交
34
#include "paddle/fluid/framework/archive.h"
35
#include "paddle/fluid/framework/blocking_queue.h"
J
jiaqi 已提交
36
#include "paddle/fluid/framework/channel.h"
W
Wang Guibao 已提交
37
#include "paddle/fluid/framework/data_feed.pb.h"
38
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
W
Wang Guibao 已提交
39 40 41
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable.h"
42
#include "paddle/fluid/string/string_helper.h"
W
Wang Guibao 已提交
43

W
wanghuancoder 已提交
44 45 46 47 48 49 50 51 52
namespace paddle {
namespace framework {
class DataFeedDesc;
class LoDTensor;
class Scope;
class Variable;
}  // namespace framework
}  // namespace paddle

W
Wang Guibao 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
namespace paddle {
namespace framework {

// DataFeed is the base virtual class for all ohther DataFeeds.
// It is used to read files and parse the data for subsequent trainer.
// Example:
//   DataFeed* reader =
//   paddle::framework::DataFeedFactory::CreateDataFeed(data_feed_name);
//   reader->Init(data_feed_desc); // data_feed_desc is a protobuf object
//   reader->SetFileList(filelist);
//   const std::vector<std::string> & use_slot_alias =
//   reader->GetUseSlotAlias();
//   for (auto name: use_slot_alias){ // for binding memory
//     reader->AddFeedVar(scope->Var(name), name);
//   }
//   reader->Start();
//   while (reader->Next()) {
//      // trainer do something
//   }
T
Thunderbrook 已提交
72
union FeatureFeasign {
73 74 75 76 77 78
  uint64_t uint64_feasign_;
  float float_feasign_;
};

struct FeatureItem {
  FeatureItem() {}
T
Thunderbrook 已提交
79
  FeatureItem(FeatureFeasign sign, uint16_t slot) {
80 81 82
    this->sign() = sign;
    this->slot() = slot;
  }
T
Thunderbrook 已提交
83 84 85 86 87 88
  FeatureFeasign& sign() {
    return *(reinterpret_cast<FeatureFeasign*>(sign_buffer()));
  }
  const FeatureFeasign& sign() const {
    const FeatureFeasign* ret =
        reinterpret_cast<FeatureFeasign*>(sign_buffer());
89 90 91 92 93 94 95
    return *ret;
  }
  uint16_t& slot() { return slot_; }
  const uint16_t& slot() const { return slot_; }

 private:
  char* sign_buffer() const { return const_cast<char*>(sign_); }
T
Thunderbrook 已提交
96
  char sign_[sizeof(FeatureFeasign)];
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  uint16_t slot_;
};

// sizeof Record is much less than std::vector<MultiSlotType>
struct Record {
  std::vector<FeatureItem> uint64_feasigns_;
  std::vector<FeatureItem> float_feasigns_;
  std::string ins_id_;
  std::string content_;
  uint64_t search_id;
  uint32_t rank;
  uint32_t cmatch;
};

struct PvInstanceObject {
  std::vector<Record*> ads;
  void merge_instance(Record* ins) { ads.push_back(ins); }
};

using PvInstance = PvInstanceObject*;

inline PvInstance make_pv_instance() { return new PvInstanceObject(); }

W
Wang Guibao 已提交
120 121
class DataFeed {
 public:
122 123 124
  DataFeed() {
    mutex_for_pick_file_ = nullptr;
    file_idx_ = nullptr;
H
hutuxian 已提交
125 126
    mutex_for_fea_num_ = nullptr;
    total_fea_num_ = nullptr;
127
  }
W
Wang Guibao 已提交
128
  virtual ~DataFeed() {}
H
hutuxian 已提交
129
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
W
Wang Guibao 已提交
130
  virtual bool CheckFile(const char* filename) {
131 132
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(CheckFile) is not implemented."));
W
Wang Guibao 已提交
133 134 135 136 137 138
  }
  // Set filelist for DataFeed.
  // Pay attention that it must init all readers before call this function.
  // Otherwise, Init() function will init finish_set_filelist_ flag.
  virtual bool SetFileList(const std::vector<std::string>& files);
  virtual bool Start() = 0;
D
dongdaxiang 已提交
139

W
Wang Guibao 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  // The trainer calls the Next() function, and the DataFeed will load a new
  // batch to the feed_vec. The return value of this function is the batch
  // size of the current batch.
  virtual int Next() = 0;
  // Get all slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetAllSlotAlias() {
    return all_slots_;
  }
  // Get used slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetUseSlotAlias() {
    return use_slots_;
  }
  // This function is used for binding feed_vec memory
  virtual void AddFeedVar(Variable* var, const std::string& name);

H
hutuxian 已提交
155 156 157
  // This function is used for binding feed_vec memory in a given scope
  virtual void AssignFeedVar(const Scope& scope);

158 159 160 161 162 163 164
  // This function will do nothing at default
  virtual void SetInputPvChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetOutputPvChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetConsumePvChannel(void* channel) {}

165
  // This function will do nothing at default
J
jiaqi 已提交
166 167 168
  virtual void SetInputChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetOutputChannel(void* channel) {}
169
  // This function will do nothing at default
J
jiaqi 已提交
170
  virtual void SetConsumeChannel(void* channel) {}
171
  // This function will do nothing at default
172
  virtual void SetThreadId(int thread_id) {}
173
  // This function will do nothing at default
174
  virtual void SetThreadNum(int thread_num) {}
175 176
  // This function will do nothing at default
  virtual void SetParseInsId(bool parse_ins_id) {}
177
  virtual void SetParseContent(bool parse_content) {}
178 179 180
  virtual void SetParseLogKey(bool parse_logkey) {}
  virtual void SetEnablePvMerge(bool enable_pv_merge) {}
  virtual void SetCurrentPhase(int current_phase) {}
181 182 183
  virtual void SetFileListMutex(std::mutex* mutex) {
    mutex_for_pick_file_ = mutex;
  }
H
hutuxian 已提交
184
  virtual void SetFeaNumMutex(std::mutex* mutex) { mutex_for_fea_num_ = mutex; }
185
  virtual void SetFileListIndex(size_t* file_index) { file_idx_ = file_index; }
H
hutuxian 已提交
186
  virtual void SetFeaNum(uint64_t* fea_num) { total_fea_num_ = fea_num; }
187 188 189 190 191 192 193
  virtual const std::vector<std::string>& GetInsIdVec() const {
    return ins_id_vec_;
  }
  virtual const std::vector<std::string>& GetInsContentVec() const {
    return ins_content_vec_;
  }
  virtual int GetCurBatchSize() { return batch_size_; }
194
  virtual void LoadIntoMemory() {
195 196
    PADDLE_THROW(platform::errors::Unimplemented(
        "This function(LoadIntoMemory) is not implemented."));
197
  }
198 199 200 201
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
  virtual const paddle::platform::Place& GetPlace() const { return place_; }
202

W
Wang Guibao 已提交
203 204 205 206 207 208 209 210 211 212 213 214
 protected:
  // The following three functions are used to check if it is executed in this
  // order:
  //   Init() -> SetFileList() -> Start() -> Next()
  virtual void CheckInit();
  virtual void CheckSetFileList();
  virtual void CheckStart();
  virtual void SetBatchSize(
      int batch);  // batch size will be set in Init() function
  // This function is used to pick one file from the global filelist(thread
  // safe).
  virtual bool PickOneFile(std::string* filename);
215
  virtual void CopyToFeedTensor(void* dst, const void* src, size_t size);
W
Wang Guibao 已提交
216

217 218 219
  std::vector<std::string> filelist_;
  size_t* file_idx_;
  std::mutex* mutex_for_pick_file_;
H
hutuxian 已提交
220 221 222
  std::mutex* mutex_for_fea_num_ = nullptr;
  uint64_t* total_fea_num_ = nullptr;
  uint64_t fea_num_ = 0;
W
Wang Guibao 已提交
223 224 225 226 227 228 229 230 231 232

  // the alias of used slots, and its order is determined by
  // data_feed_desc(proto object)
  std::vector<std::string> use_slots_;
  std::vector<bool> use_slots_is_dense_;

  // the alias of all slots, and its order is determined by data_feed_desc(proto
  // object)
  std::vector<std::string> all_slots_;
  std::vector<std::string> all_slots_type_;
233
  std::vector<std::vector<int>> use_slots_shape_;
234 235
  std::vector<int> inductive_shape_index_;
  std::vector<int> total_dims_without_inductive_;
H
hutuxian 已提交
236 237
  // For the inductive shape passed within data
  std::vector<std::vector<int>> multi_inductive_shape_index_;
W
Wang Guibao 已提交
238 239 240 241
  std::vector<int>
      use_slots_index_;  // -1: not used; >=0: the index of use_slots_

  // The data read by DataFeed will be stored here
242
  std::vector<LoDTensor*> feed_vec_;
W
Wang Guibao 已提交
243

244 245
  LoDTensor* rank_offset_;

W
Wang Guibao 已提交
246 247 248 249 250 251
  // the batch size defined by user
  int default_batch_size_;
  // current batch size
  int batch_size_;

  bool finish_init_;
252
  bool finish_set_filelist_;
W
Wang Guibao 已提交
253
  bool finish_start_;
254
  std::string pipe_command_;
255 256
  std::vector<std::string> ins_id_vec_;
  std::vector<std::string> ins_content_vec_;
257
  platform::Place place_;
258 259 260

  // The input type of pipe reader, 0 for one sample, 1 for one batch
  int input_type_;
W
Wang Guibao 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
};

// PrivateQueueDataFeed is the base virtual class for ohther DataFeeds.
// It use a read-thread to read file and parse data to a private-queue
// (thread level), and get data from this queue when trainer call Next().
template <typename T>
class PrivateQueueDataFeed : public DataFeed {
 public:
  PrivateQueueDataFeed() {}
  virtual ~PrivateQueueDataFeed() {}
  virtual bool Start();
  virtual int Next();

 protected:
  // The thread implementation function for reading file and parse.
  virtual void ReadThread();
  // This function is used to set private-queue size, and the most
  // efficient when the queue size is close to the batch size.
  virtual void SetQueueSize(int queue_size);
  // The reading and parsing method called in the ReadThread.
  virtual bool ParseOneInstance(T* instance) = 0;
D
dongdaxiang 已提交
282
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
W
Wang Guibao 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296
  // This function is used to put instance to vec_ins
  virtual void AddInstanceToInsVec(T* vec_ins, const T& instance,
                                   int index) = 0;
  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec(const T& ins_vec) = 0;

  // The thread for read files
  std::thread read_thread_;
  // using ifstream one line and one line parse is faster
  // than using fread one buffer and one buffer parse.
  //   for a 601M real data:
  //     ifstream one line and one line parse: 6034 ms
  //     fread one buffer and one buffer parse: 7097 ms
  std::ifstream file_;
D
dongdaxiang 已提交
297
  std::shared_ptr<FILE> fp_;
W
Wang Guibao 已提交
298
  size_t queue_size_;
299
  string::LineFileReader reader_;
W
Wang Guibao 已提交
300
  // The queue for store parsed data
301
  std::shared_ptr<paddle::framework::ChannelObject<T>> queue_;
W
Wang Guibao 已提交
302 303
};

304
template <typename T>
J
jiaqi 已提交
305
class InMemoryDataFeed : public DataFeed {
306 307 308
 public:
  InMemoryDataFeed();
  virtual ~InMemoryDataFeed() {}
H
hutuxian 已提交
309
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
310 311
  virtual bool Start();
  virtual int Next();
312 313 314 315
  virtual void SetInputPvChannel(void* channel);
  virtual void SetOutputPvChannel(void* channel);
  virtual void SetConsumePvChannel(void* channel);

J
jiaqi 已提交
316 317 318
  virtual void SetInputChannel(void* channel);
  virtual void SetOutputChannel(void* channel);
  virtual void SetConsumeChannel(void* channel);
319 320
  virtual void SetThreadId(int thread_id);
  virtual void SetThreadNum(int thread_num);
321
  virtual void SetParseInsId(bool parse_ins_id);
322
  virtual void SetParseContent(bool parse_content);
323 324 325
  virtual void SetParseLogKey(bool parse_logkey);
  virtual void SetEnablePvMerge(bool enable_pv_merge);
  virtual void SetCurrentPhase(int current_phase);
326
  virtual void LoadIntoMemory();
X
xujiaqi01 已提交
327

328 329 330
 protected:
  virtual bool ParseOneInstance(T* instance) = 0;
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
J
jiaqi 已提交
331
  virtual void PutToFeedVec(const std::vector<T>& ins_vec) = 0;
332

333 334
  int thread_id_;
  int thread_num_;
335
  bool parse_ins_id_;
336
  bool parse_content_;
337 338 339
  bool parse_logkey_;
  bool enable_pv_merge_;
  int current_phase_{-1};  // only for untest
J
jiaqi 已提交
340 341 342 343 344
  std::ifstream file_;
  std::shared_ptr<FILE> fp_;
  paddle::framework::ChannelObject<T>* input_channel_;
  paddle::framework::ChannelObject<T>* output_channel_;
  paddle::framework::ChannelObject<T>* consume_channel_;
345 346 347 348

  paddle::framework::ChannelObject<PvInstance>* input_pv_channel_;
  paddle::framework::ChannelObject<PvInstance>* output_pv_channel_;
  paddle::framework::ChannelObject<PvInstance>* consume_pv_channel_;
349 350
};

W
Wang Guibao 已提交
351 352 353 354 355
// This class define the data type of instance(ins_vec) in MultiSlotDataFeed
class MultiSlotType {
 public:
  MultiSlotType() {}
  ~MultiSlotType() {}
H
hutuxian 已提交
356
  void Init(const std::string& type, size_t reserved_size = 0) {
W
Wang Guibao 已提交
357 358 359
    CheckType(type);
    if (type_[0] == 'f') {
      float_feasign_.clear();
H
hutuxian 已提交
360 361 362
      if (reserved_size) {
        float_feasign_.reserve(reserved_size);
      }
W
Wang Guibao 已提交
363 364
    } else if (type_[0] == 'u') {
      uint64_feasign_.clear();
H
hutuxian 已提交
365 366 367
      if (reserved_size) {
        uint64_feasign_.reserve(reserved_size);
      }
W
Wang Guibao 已提交
368 369 370
    }
    type_ = type;
  }
H
hutuxian 已提交
371 372 373 374
  void InitOffset(size_t max_batch_size = 0) {
    if (max_batch_size > 0) {
      offset_.reserve(max_batch_size + 1);
    }
W
Wang Guibao 已提交
375 376 377 378 379 380
    offset_.resize(1);
    // LoDTensor' lod is counted from 0, the size of lod
    // is one size larger than the size of data.
    offset_[0] = 0;
  }
  const std::vector<size_t>& GetOffset() const { return offset_; }
381
  std::vector<size_t>& MutableOffset() { return offset_; }
W
Wang Guibao 已提交
382 383 384 385 386 387 388 389
  void AddValue(const float v) {
    CheckFloat();
    float_feasign_.push_back(v);
  }
  void AddValue(const uint64_t v) {
    CheckUint64();
    uint64_feasign_.push_back(v);
  }
H
hutuxian 已提交
390 391 392 393 394 395 396 397 398 399
  void CopyValues(const float* input, size_t size) {
    CheckFloat();
    float_feasign_.resize(size);
    memcpy(float_feasign_.data(), input, size * sizeof(float));
  }
  void CopyValues(const uint64_t* input, size_t size) {
    CheckUint64();
    uint64_feasign_.resize(size);
    memcpy(uint64_feasign_.data(), input, size * sizeof(uint64_t));
  }
W
Wang Guibao 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412
  void AddIns(const MultiSlotType& ins) {
    if (ins.GetType()[0] == 'f') {  // float
      CheckFloat();
      auto& vec = ins.GetFloatData();
      offset_.push_back(offset_.back() + vec.size());
      float_feasign_.insert(float_feasign_.end(), vec.begin(), vec.end());
    } else if (ins.GetType()[0] == 'u') {  // uint64
      CheckUint64();
      auto& vec = ins.GetUint64Data();
      offset_.push_back(offset_.back() + vec.size());
      uint64_feasign_.insert(uint64_feasign_.end(), vec.begin(), vec.end());
    }
  }
H
hutuxian 已提交
413 414 415 416 417 418 419 420
  void AppendValues(const uint64_t* input, size_t size) {
    CheckUint64();
    offset_.push_back(offset_.back() + size);
    uint64_feasign_.insert(uint64_feasign_.end(), input, input + size);
  }
  void AppendValues(const float* input, size_t size) {
    CheckFloat();
    offset_.push_back(offset_.back() + size);
421

H
hutuxian 已提交
422 423
    float_feasign_.insert(float_feasign_.end(), input, input + size);
  }
W
Wang Guibao 已提交
424
  const std::vector<float>& GetFloatData() const { return float_feasign_; }
425
  std::vector<float>& MutableFloatData() { return float_feasign_; }
W
Wang Guibao 已提交
426
  const std::vector<uint64_t>& GetUint64Data() const { return uint64_feasign_; }
427
  std::vector<uint64_t>& MutableUint64Data() { return uint64_feasign_; }
W
Wang Guibao 已提交
428
  const std::string& GetType() const { return type_; }
H
hutuxian 已提交
429
  size_t GetBatchSize() { return offset_.size() - 1; }
430
  std::string& MutableType() { return type_; }
W
Wang Guibao 已提交
431

X
xujiaqi01 已提交
432 433
  std::string DebugString() {
    std::stringstream ss;
W
wanghuancoder 已提交
434

435 436
    ss << "\ntype: " << type_ << "\n";
    ss << "offset: ";
X
xujiaqi01 已提交
437 438 439 440
    ss << "[";
    for (const size_t& i : offset_) {
      ss << offset_[i] << ",";
    }
441
    ss << "]\ndata: [";
X
xujiaqi01 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454
    if (type_[0] == 'f') {
      for (const float& i : float_feasign_) {
        ss << i << ",";
      }
    } else {
      for (const uint64_t& i : uint64_feasign_) {
        ss << i << ",";
      }
    }
    ss << "]\n";
    return ss.str();
  }

W
Wang Guibao 已提交
455 456
 private:
  void CheckType(const std::string& type) const {
457 458 459 460 461
    PADDLE_ENFORCE_EQ((type == "uint64" || type == "float"), true,
                      platform::errors::InvalidArgument(
                          "MultiSlotType error, expect type is uint64 or "
                          "float, but received type is %s.",
                          type));
W
Wang Guibao 已提交
462 463
  }
  void CheckFloat() const {
464 465 466 467
    PADDLE_ENFORCE_EQ(
        type_[0], 'f',
        platform::errors::InvalidArgument(
            "MultiSlotType error, add %s value to float slot.", type_));
W
Wang Guibao 已提交
468 469
  }
  void CheckUint64() const {
470 471 472 473
    PADDLE_ENFORCE_EQ(
        type_[0], 'u',
        platform::errors::InvalidArgument(
            "MultiSlotType error, add %s value to uint64 slot.", type_));
W
Wang Guibao 已提交
474 475 476 477 478 479 480
  }
  std::vector<float> float_feasign_;
  std::vector<uint64_t> uint64_feasign_;
  std::string type_;
  std::vector<size_t> offset_;
};

J
jiaqi 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const MultiSlotType& ins) {
  ar << ins.GetType();
#ifdef _LINUX
  ar << ins.GetOffset();
#else
  const auto& offset = ins.GetOffset();
  ar << (uint64_t)offset.size();
  for (const size_t& x : offset) {
    ar << (const uint64_t)x;
  }
#endif
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           MultiSlotType& ins) {
  ar >> ins.MutableType();
#ifdef _LINUX
  ar >> ins.MutableOffset();
#else
  auto& offset = ins.MutableOffset();
  offset.resize(ar.template Get<uint64_t>());
  for (size_t& x : offset) {
    uint64_t t;
    ar >> t;
    x = (size_t)t;
  }
#endif
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
  return ar;
}

519 520
struct RecordCandidate {
  std::string ins_id_;
T
Thunderbrook 已提交
521
  std::unordered_multimap<uint16_t, FeatureFeasign> feas_;
522 523 524 525 526 527 528 529 530 531 532 533
  size_t shadow_index_ = -1;  // Optimization for Reservoir Sample

  RecordCandidate() {}
  RecordCandidate(const Record& rec,
                  const std::unordered_set<uint16_t>& slot_index_to_replace) {
    for (const auto& fea : rec.uint64_feasigns_) {
      if (slot_index_to_replace.find(fea.slot()) !=
          slot_index_to_replace.end()) {
        feas_.insert({fea.slot(), fea.sign()});
      }
    }
  }
534 535

  RecordCandidate& operator=(const Record& rec) {
536
    feas_.clear();
537 538
    ins_id_ = rec.ins_id_;
    for (auto& fea : rec.uint64_feasigns_) {
539
      feas_.insert({fea.slot(), fea.sign()});
540 541 542 543 544 545 546 547
    }
    return *this;
  }
};

class RecordCandidateList {
 public:
  RecordCandidateList() = default;
548
  RecordCandidateList(const RecordCandidateList&) {}
549

550
  size_t Size() { return cur_size_; }
551 552 553
  void ReSize(size_t length);

  void ReInit();
554 555 556 557 558 559 560 561 562 563 564 565
  void ReInitPass() {
    for (size_t i = 0; i < cur_size_; ++i) {
      if (candidate_list_[i].shadow_index_ != i) {
        candidate_list_[i].ins_id_ =
            candidate_list_[candidate_list_[i].shadow_index_].ins_id_;
        candidate_list_[i].feas_.swap(
            candidate_list_[candidate_list_[i].shadow_index_].feas_);
        candidate_list_[i].shadow_index_ = i;
      }
    }
    candidate_list_.resize(cur_size_);
  }
566 567

  void AddAndGet(const Record& record, RecordCandidate* result);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
  void AddAndGet(const Record& record, size_t& index_result) {  // NOLINT
    // std::unique_lock<std::mutex> lock(mutex_);
    size_t index = 0;
    ++total_size_;
    auto fleet_ptr = FleetWrapper::GetInstance();
    if (!full_) {
      candidate_list_.emplace_back(record, slot_index_to_replace_);
      candidate_list_.back().shadow_index_ = cur_size_;
      ++cur_size_;
      full_ = (cur_size_ == capacity_);
    } else {
      index = fleet_ptr->LocalRandomEngine()() % total_size_;
      if (index < capacity_) {
        candidate_list_.emplace_back(record, slot_index_to_replace_);
        candidate_list_[index].shadow_index_ = candidate_list_.size() - 1;
      }
    }
    index = fleet_ptr->LocalRandomEngine()() % cur_size_;
    index_result = candidate_list_[index].shadow_index_;
  }
  const RecordCandidate& Get(size_t index) const {
    PADDLE_ENFORCE_LT(
        index, candidate_list_.size(),
        platform::errors::OutOfRange("Your index [%lu] exceeds the number of "
                                     "elements in candidate_list[%lu].",
                                     index, candidate_list_.size()));
    return candidate_list_[index];
  }
  void SetSlotIndexToReplace(
      const std::unordered_set<uint16_t>& slot_index_to_replace) {
    slot_index_to_replace_ = slot_index_to_replace;
  }
600 601

 private:
602 603 604 605 606 607 608
  size_t capacity_ = 0;
  std::mutex mutex_;
  bool full_ = false;
  size_t cur_size_ = 0;
  size_t total_size_ = 0;
  std::vector<RecordCandidate> candidate_list_;
  std::unordered_set<uint16_t> slot_index_to_replace_;
609 610
};

J
jiaqi 已提交
611 612
template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
T
Thunderbrook 已提交
613
                                           const FeatureFeasign& fk) {
J
jiaqi 已提交
614 615 616 617 618 619 620
  ar << fk.uint64_feasign_;
  ar << fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
T
Thunderbrook 已提交
621
                                           FeatureFeasign& fk) {
J
jiaqi 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
  ar >> fk.uint64_feasign_;
  ar >> fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const FeatureItem& fi) {
  ar << fi.sign();
  ar << fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           FeatureItem& fi) {
  ar >> fi.sign();
  ar >> fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const Record& r) {
  ar << r.uint64_feasigns_;
  ar << r.float_feasigns_;
  ar << r.ins_id_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           Record& r) {
  ar >> r.uint64_feasigns_;
  ar >> r.float_feasigns_;
  ar >> r.ins_id_;
  return ar;
}

W
Wang Guibao 已提交
661 662 663 664 665 666 667 668
// This DataFeed is used to feed multi-slot type data.
// The format of multi-slot type data:
//   [n feasign_0 feasign_1 ... feasign_n]*
class MultiSlotDataFeed
    : public PrivateQueueDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotDataFeed() {}
  virtual ~MultiSlotDataFeed() {}
H
hutuxian 已提交
669
  virtual void Init(const DataFeedDesc& data_feed_desc);
W
Wang Guibao 已提交
670 671 672
  virtual bool CheckFile(const char* filename);

 protected:
D
dongdaxiang 已提交
673
  virtual void ReadThread();
W
Wang Guibao 已提交
674 675 676 677
  virtual void AddInstanceToInsVec(std::vector<MultiSlotType>* vec_ins,
                                   const std::vector<MultiSlotType>& instance,
                                   int index);
  virtual bool ParseOneInstance(std::vector<MultiSlotType>* instance);
D
dongdaxiang 已提交
678
  virtual bool ParseOneInstanceFromPipe(std::vector<MultiSlotType>* instance);
W
Wang Guibao 已提交
679 680
  virtual void PutToFeedVec(const std::vector<MultiSlotType>& ins_vec);
};
681

J
jiaqi 已提交
682
class MultiSlotInMemoryDataFeed : public InMemoryDataFeed<Record> {
683 684 685
 public:
  MultiSlotInMemoryDataFeed() {}
  virtual ~MultiSlotInMemoryDataFeed() {}
H
hutuxian 已提交
686
  virtual void Init(const DataFeedDesc& data_feed_desc);
687

688
 protected:
J
jiaqi 已提交
689 690 691
  virtual bool ParseOneInstance(Record* instance);
  virtual bool ParseOneInstanceFromPipe(Record* instance);
  virtual void PutToFeedVec(const std::vector<Record>& ins_vec);
692 693
  virtual void GetMsgFromLogKey(const std::string& log_key, uint64_t* search_id,
                                uint32_t* cmatch, uint32_t* rank);
H
hutuxian 已提交
694 695 696 697
  std::vector<std::vector<float>> batch_float_feasigns_;
  std::vector<std::vector<uint64_t>> batch_uint64_feasigns_;
  std::vector<std::vector<size_t>> offset_;
  std::vector<bool> visit_;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
};

class PaddleBoxDataFeed : public MultiSlotInMemoryDataFeed {
 public:
  PaddleBoxDataFeed() {}
  virtual ~PaddleBoxDataFeed() {}

 protected:
  virtual void Init(const DataFeedDesc& data_feed_desc);
  virtual bool Start();
  virtual int Next();
  virtual void AssignFeedVar(const Scope& scope);
  virtual void PutToFeedVec(const std::vector<PvInstance>& pv_vec);
  virtual void PutToFeedVec(const std::vector<Record*>& ins_vec);
  virtual int GetCurrentPhase();
  virtual void GetRankOffset(const std::vector<PvInstance>& pv_vec,
                             int ins_number);
  std::string rank_offset_name_;
  int pv_batch_size_;
717 718
};

H
hutuxian 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
template <typename T>
class PrivateInstantDataFeed : public DataFeed {
 public:
  PrivateInstantDataFeed() {}
  virtual ~PrivateInstantDataFeed() {}
  void Init(const DataFeedDesc& data_feed_desc) override;
  bool Start() override { return true; }
  int Next() override;

 protected:
  // The batched data buffer
  std::vector<MultiSlotType> ins_vec_;

  // This function is used to preprocess with a given filename, e.g. open it or
  // mmap
  virtual bool Preprocess(const std::string& filename) = 0;

  // This function is used to postprocess system resource such as closing file
  // NOTICE: Ensure that it is safe to call before Preprocess
  virtual bool Postprocess() = 0;

  // The reading and parsing method.
  virtual bool ParseOneMiniBatch() = 0;

  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec();
};

class MultiSlotFileInstantDataFeed
    : public PrivateInstantDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotFileInstantDataFeed() {}
  virtual ~MultiSlotFileInstantDataFeed() {}

 protected:
  int fd_{-1};
  char* buffer_{nullptr};
  size_t end_{0};
  size_t offset_{0};

  bool Preprocess(const std::string& filename) override;

  bool Postprocess() override;

  bool ParseOneMiniBatch() override;
};
#endif

W
Wang Guibao 已提交
768 769
}  // namespace framework
}  // namespace paddle