context_project.h 12.6 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/operators/math/im2col.h"

namespace paddle {
namespace operators {
namespace math {

C
chengduoZH 已提交
25 26
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
C
chengduoZH 已提交
27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
C
chengduoZH 已提交
30

C
chengduoZH 已提交
31
/*
C
chengduoZH 已提交
32
 * \brief Context projection concatenates features in adjacent time-steps in
C
chengduoZH 已提交
33 34 35
 * a sequence. The i-th row of the output is the concatenation of
 * context_length rows of the input. The context_length rows are the
 * consecutive rows from the i+shift_start row.
C
sss  
chengduoZH 已提交
36
 * ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
C
chengduoZH 已提交
37
 *
C
chengduoZH 已提交
38
 * \param in            Input data.
C
chengduoZH 已提交
39 40
 * \param Shape         The shape of Input data:
 *                        [mini-batch, input_hidden_size].
C
chengduoZH 已提交
41
 *
C
chengduoZH 已提交
42
 * \param padding_data  Padding data.
C
chengduoZH 已提交
43 44
 * \param Shape         The shape of Padding data:
 *                        [up_pad + down_pad, input_hidden_size].
C
chengduoZH 已提交
45
 *
C
chengduoZH 已提交
46
 * \param col           Col data.
C
chengduoZH 已提交
47 48
 * \param Shape         The shape of Col data:
 *                        [mini-batch, context_length * input_hidden_size].
C
chengduoZH 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
C
chengduoZH 已提交
66 67 68
 *   If context_start is -1 and padding_trainable is false, we use zero to pad
 *   instead of learned weight to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
69
 *
C
chengduoZH 已提交
70 71 72 73
 *   Out =[[0,  0,  a1, a2, b1, b2;
 *          a1, a2, b1, b2, c1, c2;
 *          b1, b2, c1, c2, 0,  0 ]
 *          [0,  0, d1, d2, 0,  0 ]]
C
chengduoZH 已提交
74 75
 *
 * - Case2:
C
chengduoZH 已提交
76 77 78
 *   If context_start is -1 and padding_trainable is true, we use learned weight
 *   to pad,
 *   and the context_length is 3, the output (Out) is:
C
chengduoZH 已提交
79
 *
C
chengduoZH 已提交
80 81 82 83
 *   Out = [[w1, w2, a1, a2, b1, b2;
 *           a1, a2, b1, b2, c1, c2;
 *           b1, b2, c1, c2, w3, w4]
 *          [w1, w2, d1, d2, w3, w4]]
C
chengduoZH 已提交
84 85 86 87
 *
 */

template <typename Place, typename T>
C
chengduoZH 已提交
88
class ContextProjectFunctor {
C
chengduoZH 已提交
89
 public:
C
chengduoZH 已提交
90 91
  void operator()(const platform::DeviceContext& context, const LoDTensor& in,
                  const Tensor& padding_data, Tensor& col,
C
sss  
chengduoZH 已提交
92 93
                  bool padding_trainable, int context_start, int context_length,
                  int context_stride, int up_pad, int down_pad) {
C
chengduoZH 已提交
94
    auto lod_level_0 = in.lod()[0];
C
chengduoZH 已提交
95

C
chengduoZH 已提交
96
    math::Im2ColFunctor<math::ColFormat::kOCF, Place, float> im2col_ocf;
C
sss  
chengduoZH 已提交
97

C
chengduoZH 已提交
98 99 100
    std::vector<int> dilation({1, 1});
    std::vector<int> padding({up_pad, 0, down_pad, 0});
    std::vector<int> stride({context_stride, 1});
C
chengduoZH 已提交
101

C
sss  
chengduoZH 已提交
102 103 104 105 106 107 108 109 110 111
    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in.dims()[1];

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

C
chengduoZH 已提交
112 113
      Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                               static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
114 115 116 117

      sequence_height = static_cast<int>(out_t.dims()[0]);

      if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
118
        Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
sss  
chengduoZH 已提交
119 120 121 122 123 124 125 126 127 128 129

        std::vector<int64_t> output_shape(
            {sequence_height, 1, 1, context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width
        out_t.Resize(framework::make_ddim(output_shape));

        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));
C
chengduoZH 已提交
130
        im2col_ocf(context, in_t, dilation, stride, padding, &out_t);
C
sss  
chengduoZH 已提交
131 132 133 134 135
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
    if (padding_trainable) {
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
C
chengduoZH 已提交
136 137
        Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
C
sss  
chengduoZH 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150

        sequence_height = static_cast<int>(out_t.dims()[0]);

        // add up trainable data
        out_t.Resize({sequence_height * context_length, sequence_width});

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
151 152 153
            Tensor out_t_sub = out_t.Slice(k * context_length,
                                           k * context_length + padding_size);
            Tensor w_sub = padding_data.Slice(k, k + padding_size);
C
sss  
chengduoZH 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
            }
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
C
chengduoZH 已提交
180 181

            Tensor out_t_sub = out_t.Slice(
C
sss  
chengduoZH 已提交
182 183
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
184
            Tensor w_sub = padding_data.Slice(
C
sss  
chengduoZH 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        out_t.Resize({sequence_height, context_length * sequence_width});
      }
    }
  }
};

template <typename Place, typename T>
class ContextProjectGradFunctor {
 public:
C
chengduoZH 已提交
200 201
  void operator()(const platform::DeviceContext& context, LoDTensor& in,
                  Tensor& padding_data, Tensor& col, bool padding_trainable,
C
sss  
chengduoZH 已提交
202 203 204 205
                  int context_start, int context_length, int context_stride,
                  int up_pad, int down_pad, bool input_grad, bool pad_grad) {
    auto lod_level_0 = in.lod()[0];

C
chengduoZH 已提交
206
    math::Col2ImFunctor<math::ColFormat::kOCF, Place, float> col2im_ocf;
C
chengduoZH 已提交
207

C
chengduoZH 已提交
208 209 210
    std::vector<int> dilation({1, 1});
    std::vector<int> padding({up_pad, 0, down_pad, 0});
    std::vector<int> stride({context_stride, 1});
C
chengduoZH 已提交
211

C
chengduoZH 已提交
212 213
    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
C
chengduoZH 已提交
214 215
    sequence_width = in.dims()[1];

C
sss  
chengduoZH 已提交
216
    if (input_grad) {
C
chengduoZH 已提交
217 218 219 220 221 222
      for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
        input_row_begin = (context_start > 0)
                              ? static_cast<int>(lod_level_0[i]) + context_start
                              : static_cast<int>(lod_level_0[i]);
        input_row_end = static_cast<int>(lod_level_0[i + 1]);

C
chengduoZH 已提交
223 224
        Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                 static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
225 226 227 228

        sequence_height = static_cast<int>(out_t.dims()[0]);

        if (input_row_begin < input_row_end) {
C
chengduoZH 已提交
229
          Tensor in_t = in.Slice(input_row_begin, input_row_end);
C
chengduoZH 已提交
230 231 232 233 234 235 236 237 238 239 240 241

          std::vector<int64_t> output_shape(
              {sequence_height, 1, 1, context_length,
               sequence_width});  // output_height, output_width,
          // input_channels, filter_height, filter_width
          out_t.Resize(framework::make_ddim(output_shape));

          std::vector<int64_t> input_shape(
              {1, input_row_end - input_row_begin,
               sequence_width});  // input_channels, input_height, input_width
          in_t.Resize(framework::make_ddim(input_shape));

C
chengduoZH 已提交
242
          col2im_ocf(context, out_t, dilation, stride, padding, &in_t);
C
chengduoZH 已提交
243
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
244
        }
C
chengduoZH 已提交
245
      }
C
chengduoZH 已提交
246
    }
C
sss  
chengduoZH 已提交
247
    if (pad_grad) {
C
chengduoZH 已提交
248
      if (padding_trainable) {
C
chengduoZH 已提交
249
        for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
C
chengduoZH 已提交
250 251
          Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
                                   static_cast<int>(lod_level_0[i + 1]));
C
chengduoZH 已提交
252 253

          sequence_height = static_cast<int>(out_t.dims()[0]);
C
chengduoZH 已提交
254
          out_t.Resize({sequence_height * context_length, sequence_width});
C
chengduoZH 已提交
255

C
sss  
chengduoZH 已提交
256
          if (up_pad > 0) {
C
chengduoZH 已提交
257 258 259 260 261 262
            int padding_rows = std::min(
                up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

            for (int k = 0; k < padding_rows; ++k) {
              int padding_size =
                  k + context_length < up_pad ? context_length : up_pad - k;
C
chengduoZH 已提交
263 264 265
              Tensor out_t_sub = out_t.Slice(k * context_length,
                                             k * context_length + padding_size);
              Tensor w_sub = padding_data.Slice(k, k + padding_size);
C
chengduoZH 已提交
266 267
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
268 269
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
270
            }
C
chengduoZH 已提交
271
          }
C
sss  
chengduoZH 已提交
272
          if (down_pad > 0) {
C
chengduoZH 已提交
273 274 275 276 277 278 279 280 281
            int down_pad_begin_row =
                std::max(
                    0, (sequence_height - context_start - context_length) + 1) +
                1;
            int padding_begin = std::max(0, context_start - sequence_height);
            int padding_size =
                sequence_height - context_start >= context_length
                    ? 1
                    : context_length - (sequence_height - context_start);
C
chengduoZH 已提交
282
            if (context_start >= sequence_height) padding_size = context_length;
C
chengduoZH 已提交
283 284 285 286 287 288 289 290 291 292 293
            int padding_idx = padding_begin;
            for (int t = 0; t + down_pad_begin_row <= sequence_height;
                 ++t, ++padding_size) {
              if (context_start >= sequence_height)
                padding_size = context_length;
              if (padding_size > context_length) {
                padding_size = context_length;
                padding_idx++;
              }
              if (padding_begin > 0 || sequence_height == context_start)
                padding_idx = padding_begin + t;
C
chengduoZH 已提交
294 295

              Tensor out_t_sub = out_t.Slice(
C
chengduoZH 已提交
296 297
                  (down_pad_begin_row + t) * context_length - padding_size,
                  (down_pad_begin_row + t) * context_length);
C
chengduoZH 已提交
298
              Tensor w_sub = padding_data.Slice(
C
chengduoZH 已提交
299 300 301
                  up_pad + padding_idx, up_pad + padding_idx + padding_size);
              auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
              auto w_sub_e = EigenMatrix<T>::From(w_sub);
C
sss  
chengduoZH 已提交
302 303
              w_sub_e.device(*context.GetEigenDevice<Place>()) =
                  w_sub_e + out_t_sub_e;
C
chengduoZH 已提交
304 305
            }
          }
C
chengduoZH 已提交
306
          out_t.Resize({sequence_height, context_length * sequence_width});
C
chengduoZH 已提交
307 308 309 310 311 312 313 314 315
        }
      }
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle