“aad288ab1751e73e52079427139165d941209477”上不存在“source/libs/git@gitcode.net:taosdata/tdengine.git”
layer_function_generator.py 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#  Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
import functools
import warnings
import string

from six.moves import cStringIO
from ..static import Variable
from ..fluid.proto import framework_pb2
23
from ..framework import OpProtoHolder, core, convert_np_dtype_to_dtype_, _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
24 25 26
from ..framework import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype
import paddle
27
from paddle import _C_ops, _legacy_C_ops
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

__all__ = []


def _convert_(name):
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$")
_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$")
_two_bang_pattern_ = re.compile(r"!!([^!]+)!!")


def escape_math(text):
    #return _two_bang_pattern_.sub(
    #    r'$$\1$$',
    #    _single_dollar_pattern_.sub(r':math:\n`\1`',
    #                                _two_dollar_pattern_.sub(r"!!\1!!", text)))
    return _two_dollar_pattern_.sub(r':math:`\1`', text)


def _generate_doc_string_(op_proto,
                          additional_args_lines=None,
                          skip_attrs_set=None):
    """
    Generate docstring by OpProto

    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO()
    buf.write(escape_math(op_proto.comment))
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}'.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(" (Tensor): ")
        buf.write(escape_math(each_input.comment))
        if each_input.duplicable:
            buf.write("  Duplicatable.")
        if each_input.dispensable:
            buf.write("  Optional.")
        buf.write('\n')

    skip_attrs = OpProtoHolder.generated_op_attr_names()
    # attr use_mkldnn and is_test also should not be visible to users.
    skip_attrs.add("use_mkldnn")
    skip_attrs.add("is_test")
    skip_attrs.add("use_cudnn")

    if skip_attrs_set:
        for t in skip_attrs_set:
            skip_attrs.add(t)

    for each_attr in op_proto.attrs:
        if each_attr.name in skip_attrs:
            continue
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(escape_math(each_attr.comment))
        buf.write('\n')

    if additional_args_lines is not None:
        for line in additional_args_lines:
            line = line.strip()
            buf.write('    ')
            buf.write(line)
            buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(_convert_(each_opt.name))
        buf.write(' (Tensor): ')
        buf.write(escape_math(each_opt.comment))

    return buf.getvalue()


def generate_layer_fn(op_type):
    """Register the Python layer for an Operator.

    Args:
       op_type: The name of the operator to be created.

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
    not_intermediate_outputs = \
        [output for output in op_proto.outputs if not output.intermediate]
    intermediate_outputs = \
        [output for output in op_proto.outputs if output.intermediate]

    if len(not_intermediate_outputs) != 1:
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated. {0}".format(op_type))

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
            "Only non duplicable op can be automatically generated.")

    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable.")

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

    def infer_and_check_dtype(op_proto, *args, **kwargs):
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            if len(val) == 0:
                if len(args) == 0:
                    continue
                val = [args[0]]
                args = args[1:]

            for each in val:
                if not isinstance(each, Variable):
187 188
                    raise ValueError(
                        "input of {0} must be variable".format(op_type))
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
                            op_type, dtype, each.dtype))

        if dtype is None:
            arg_dtype = kwargs.get("dtype")
            if arg_dtype:
                if not isinstance(arg_dtype, core.VarDesc.VarType):
                    dtype = convert_np_dtype_to_dtype_(arg_dtype)
                else:
                    dtype = arg_dtype
            else:
                dtype = core.VarDesc.VarType.FP32
        return dtype

    def func(*args, **kwargs):
        helper = LayerHelper(op_type, **kwargs)

        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
            inputs[ipt.name] = val

        outputs = dict()
        out = kwargs.pop(_convert_(o_name), [])
        if out:
227 228
            out_var = out[0] if (isinstance(out, list)
                                 or isinstance(out, tuple)) else out
229 230 231 232 233 234 235
        else:
            out_var = helper.create_variable_for_type_inference(dtype=dtype)
        outputs[o_name] = [out_var]
        for name in intermediate_output_names:
            outputs[name] = [
                helper.create_variable_for_type_inference(dtype=dtype)
            ]
236 237 238 239
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=kwargs)
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        return helper.append_activation(out_var)

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


def generate_activation_fn(op_type):
    """Register the Python layer for an Operator without Attribute.

    Args:
       op_type: The name of the operator to be created.

    This function takes in the operator type (sigmoid, exp , tanh etc) and
    creates the operator functionality.

    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)

    def func(x, name=None):
260 261
        if in_dygraph_mode() and hasattr(_C_ops, op_type):
            op = getattr(_C_ops, op_type)
262 263 264 265
            return op(x)
        # TODO(dev): Because some ops' yaml has not been migrated.
        # Replace it with _in_legacy_dygraph while all yaml work is done.
        if _non_static_mode():
266
            op = getattr(_legacy_C_ops, op_type)
267 268 269 270 271 272 273
            return op(x)

        if op_type not in ["abs", "exp", "square"]:
            check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                     op_type)
        else:
            # abs exp square ops support dtype(int32, int64, float16, float32, float64)
274 275 276 277
            check_variable_and_dtype(x, 'x', [
                'int32', 'int64', 'float16', 'float32', 'float64', 'complex64',
                'complex128'
            ], op_type)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

        helper = LayerHelper(op_type, **locals())

        output = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": output})
        return output

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`."
        ])
    return func


def generate_inplace_fn(inplace_op_type):
    """Register the Python layer for an Inplace Operator without Attribute.

    Args:
       inplace_op_type: The name of the inplace operator to be created.

    This function takes in the inplace operator type (exp_ , ceil_ etc) and
    creates the operator functionality.
    """
    origin_op_type = inplace_op_type[:-1]

    def func(x, name=None):
306 307
        if in_dygraph_mode() and hasattr(_C_ops, inplace_op_type):
            op = getattr(_C_ops, inplace_op_type)
308
            return op(x)
309
        if _non_static_mode():
310
            op = getattr(_legacy_C_ops, inplace_op_type)
311 312
            return op(x)
        warnings.warn(
313 314
            "In static mode, {}() is the same as {}() and does not perform inplace operation."
            .format(inplace_op_type, origin_op_type))
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        return generate_activation_fn(origin_op_type)(x, name)

    func.__name__ = inplace_op_type
    func.__doc__ = """
Inplace version of ``{0}`` API, the output Tensor will be inplaced with input ``x``.
Please refer to :ref:`api_fluid_layers_{1}`.
""".format(origin_op_type, origin_op_type)

    return func


def templatedoc(op_type=None):
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:

    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.

    Returns:
        Decorated function.
    """

    def trim_ending_dot(msg):
        return msg.rstrip('.')

    def __impl__(func):
        if op_type is None:
            op_type_name = func.__name__
        else:
            op_type_name = op_type
        op_proto = OpProtoHolder.instance().get_op_proto(op_type_name)
        tmpl = string.Template(func.__doc__)

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
            line = line.strip()
            if len(line) != 0:
                comment += escape_math(line)
                comment += " "
            elif len(comment) != 0:
                comment += "\n    \n    "

        args = {"comment": trim_ending_dot(comment)}
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_input.comment)
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
            args["{0}_comment".format(input_name)] = trim_ending_dot(
                each_attr.comment)
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
            args["{0}_comment".format(output_name)] = trim_ending_dot(
                each_opt.comment)
            args["{0}_type".format(output_name)] = "Variable"
        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__


def add_sample_code(func, sample_code):
    """
386
    Append sample code for dynamically generated functions.
387 388 389 390 391 392

    Args:
       func: The function of the function to be append sample code to.
       sample_code: sample code session in rst format.
    """
    func.__doc__ = func.__doc__ + sample_code