test_SeqSliceLayerGrad.cpp 6.7 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include "ModelConfig.pb.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/trainer/Trainer.h"

#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed);

const int MAX_SEQ_NUM = 5;
const int MAX_SEQ_LEN = 5;
const int MAX_BEAM_SIZE = 3;

vector<real> randSampling(real range, int n) {
  CHECK_GE(range, n);
  vector<real> num(range);
  iota(begin(num), end(num), 0.);
  if (range == n) return num;

  random_shuffle(begin(num), end(num));
  num.resize(n);
  sort(begin(num), end(num));
  return num;
}

void genSeqInfo(vector<int>& seqStartPos, vector<int>& subSeqStartPos) {
  seqStartPos.resize(1, 0);
  subSeqStartPos.resize(1, 0);

  // srand((size_t)(time(NULL)));
  srand(1);
  int seqNum = 1 + (rand() % MAX_SEQ_NUM);
  for (int i = 0; i < seqNum; ++i) {
    int subSeqNum = 1 + (rand() % MAX_SEQ_NUM);
    for (int j = 0; j < subSeqNum; ++j)
      subSeqStartPos.push_back(subSeqStartPos.back() +
                               (1 + (rand() % MAX_SEQ_LEN)));
    seqStartPos.push_back(subSeqStartPos.back());
  }
}

/*
  generate start indices according to sequence start positions.
 */
void genStarts(vector<int>& seqStartPos,
               vector<vector<real>>& starts,
               size_t beamSize) {
  starts.clear();
  starts.resize(seqStartPos.size() - 1, vector<real>(beamSize, -1.));

  for (size_t i = 0; i < seqStartPos.size() - 1; ++i) {
    int seqLen = seqStartPos[i + 1] - seqStartPos[i];
    vector<real> randStarts =
        randSampling(seqLen, min(seqLen, static_cast<int>(beamSize)));
    copy(begin(randStarts), end(randStarts), begin(starts[i]));
  }
}

/*
  generate end indices according to sequence start positions and start indices.
 */
void genEnds(vector<int>& seqStartPos,
             vector<vector<real>>& starts,
             vector<vector<real>>& ends,
             size_t beamSize) {
  CHECK_EQ(seqStartPos.size() - 1, starts.size());
  ends.clear();
  ends.resize(seqStartPos.size() - 1, vector<real>(beamSize, -1.));

  for (size_t i = 0; i < starts.size(); ++i) {
    for (size_t j = 0; j < starts[i].size(); ++j) {
      int seqLen = seqStartPos[i + 1] - seqStartPos[i];
      CHECK_GE(seqLen - 1, starts[i][j]);
      if (starts[i][j] == -1.) break;
      if (starts[i][j] == (seqLen - 1)) {
        ends[i][j] = starts[i][j];
      } else {
        ends[i][j] = starts[i][j] + randSampling(seqLen - starts[i][j], 1)[0];
      }
    }
  }
}

void genTestData(vector<int>& seqStartPos,
                 vector<int>& subSeqStartPos,
                 vector<vector<real>>& starts,
                 vector<vector<real>>& ends,
                 bool hasSubseq) {
  size_t beamSize = MAX_BEAM_SIZE;
  genSeqInfo(seqStartPos, subSeqStartPos);

  genStarts(hasSubseq ? subSeqStartPos : seqStartPos, starts, beamSize);
  genEnds(hasSubseq ? subSeqStartPos : seqStartPos, starts, ends, beamSize);
}

template <typename T>
void flatten2dVector(vector<vector<T>>& inVec, vector<T>& outVec) {
  size_t totalSize{0};
  for (auto const& items : inVec) totalSize += items.size();
  outVec.reserve(totalSize);

  for (auto& items : inVec)
    move(items.begin(), items.end(), back_inserter(outVec));
}

void testSeqSliceLayer(bool hasSubseq,
                       bool useGpu,
                       vector<int>& seqStartPos,
                       vector<int>& subSeqStartPos,
                       vector<vector<real>>& starts,
                       vector<vector<real>>& ends) {
  // layer size is not crutial for this layer,
  // so here use a small layer size in the unittest.
  const size_t layerSize{4};
  TestConfig config;
  config.layerConfig.set_type("seq_slice");
  config.layerConfig.set_size(layerSize);

  // add the first input
  MatrixPtr seqInputPtr =
      Matrix::create(hasSubseq ? subSeqStartPos.back() : seqStartPos.back(),
                     layerSize,
                     false,
                     false);
  seqInputPtr->randomizeUniform();

  if (hasSubseq) {
    config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
                                "seq_input",
                                seqInputPtr,
                                seqStartPos,
                                subSeqStartPos});
  } else {
    config.inputDefs.push_back(
        {INPUT_SELF_DEFINE_DATA, "seq_input", seqInputPtr, seqStartPos});
  }
  config.layerConfig.add_inputs();

  // add start indices
  if (starts.size()) {
    vector<real> startsToVec;
    flatten2dVector(starts, startsToVec);

    MatrixPtr startMatrixPtr =
        Matrix::create(starts.size(), starts[0].size(), false, false);
    startMatrixPtr->copyFrom(startsToVec.data(), startsToVec.size());

    config.inputDefs.push_back(
        {INPUT_SELF_DEFINE_DATA, "starts", startMatrixPtr});
    config.layerConfig.add_inputs();
  }

  // add end indices
  if (ends.size()) {
    vector<real> endsToVec;
    flatten2dVector(ends, endsToVec);
    MatrixPtr endMatrixPtr =
        Matrix::create(ends.size(), ends[0].size(), false, false);
    config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, "ends", endMatrixPtr});
    config.layerConfig.add_inputs();
  }

  testLayerGrad(config, "seq_slice", /*batchSize*/ 100, false, useGpu, false);
}

TEST(Layer, SeqSliceLayer) {
  vector<int> seqStartPos;
  vector<int> subSeqStartPos;
  vector<vector<real>> starts;
  vector<vector<real>> ends;

  genSeqInfo(seqStartPos, subSeqStartPos);
  for (bool hasSubseq : {false, true}) {
    genTestData(seqStartPos, subSeqStartPos, starts, ends, hasSubseq);
    for (bool useGpu : {false, true}) {
      vector<vector<real>> tmp;
      testSeqSliceLayer(
          hasSubseq, useGpu, seqStartPos, subSeqStartPos, tmp, ends);
      testSeqSliceLayer(
          hasSubseq, useGpu, seqStartPos, subSeqStartPos, starts, tmp);
      testSeqSliceLayer(
          hasSubseq, useGpu, seqStartPos, subSeqStartPos, starts, ends);
    }
  }
}

int main(int argc, char** argv) {
  initMain(argc, argv);
  hl_start();
  hl_init(FLAGS_gpu_id);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}