test_sequence_mask.py 5.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
sneaxiy 已提交
15
import paddle.fluid as fluid
16 17 18 19 20
from paddle.fluid.framework import (
    convert_np_dtype_to_dtype_,
    Program,
    program_guard,
)
Q
qingqing01 已提交
21 22
import numpy as np
import unittest
23
import sys
24

25 26
sys.path.append("../")
from op_test import OpTest
Q
qingqing01 已提交
27 28 29 30 31


class SequenceMaskTestBase(OpTest):
    def initDefaultParameters(self):
        self.op_type = 'sequence_mask'
S
sneaxiy 已提交
32
        self.maxlen = 10
Q
qingqing01 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
        self.mask_dtype = 'int64'
        self.x = [[0, 3, 4], [5, 7, 9]]

    def initParameters(self):
        pass

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        if not isinstance(self.x, np.ndarray):
            self.x = np.array(self.x)

        self.inputs = {'X': self.x}
        self.outputs = {'Y': self.calc_ground_truth_mask()}
        self.attrs = {
S
sneaxiy 已提交
48
            'maxlen': self.maxlen,
49
            'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype),
Q
qingqing01 已提交
50 51 52
        }

    def calc_ground_truth_mask(self):
S
sneaxiy 已提交
53
        maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
54 55 56 57 58 59 60 61
        shape = self.x.shape + (maxlen,)
        index_broadcast = np.broadcast_to(
            np.reshape(range(maxlen), newshape=[1] * self.x.ndim + [-1]),
            shape=shape,
        )
        x_broadcast = np.broadcast_to(
            np.reshape(self.x, newshape=self.x.shape + (-1,)), shape=shape
        )
Q
qingqing01 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        return (index_broadcast < x_broadcast).astype(self.mask_dtype)

    def test_check_output(self):
        self.check_output()


class SequenceMaskTest1(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'bool'


class SequenceMaskTest2(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'uint8'


class SequenceMaskTest3(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'int32'


class SequenceMaskTest4(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'float32'


class SequenceMaskTest5(SequenceMaskTestBase):
    def initParameters(self):
        self.mask_dtype = 'float64'


S
sneaxiy 已提交
93 94 95 96 97
class SequenceMaskTest6(SequenceMaskTestBase):
    def initParameters(self):
        self.maxlen = -1


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
class SequenceMaskTestBase_tensor_attr(OpTest):
    def initDefaultParameters(self):
        self.op_type = 'sequence_mask'
        self.maxlen = 10
        self.maxlen_tensor = np.ones((1), 'int32') * 10
        self.mask_dtype = 'int64'
        self.x = [[0, 3, 4], [5, 7, 9]]

    def initParameters(self):
        pass

    def setUp(self):
        self.initDefaultParameters()
        self.initParameters()
        if not isinstance(self.x, np.ndarray):
            self.x = np.array(self.x)

        self.inputs = {'X': self.x, 'MaxLenTensor': self.maxlen_tensor}
        self.outputs = {'Y': self.calc_ground_truth_mask()}
        self.attrs = {'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype)}

    def calc_ground_truth_mask(self):
        maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
121 122 123 124 125 126 127 128
        shape = self.x.shape + (maxlen,)
        index_broadcast = np.broadcast_to(
            np.reshape(range(maxlen), newshape=[1] * self.x.ndim + [-1]),
            shape=shape,
        )
        x_broadcast = np.broadcast_to(
            np.reshape(self.x, newshape=self.x.shape + (-1,)), shape=shape
        )
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        return (index_broadcast < x_broadcast).astype(self.mask_dtype)

    def test_check_output(self):
        self.check_output()


class SequenceMaskTest1_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'bool'


class SequenceMaskTest2_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'uint8'


class SequenceMaskTest3_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'int32'


class SequenceMaskTest4_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'float32'


class SequenceMaskTest5_tensor_attr(SequenceMaskTestBase_tensor_attr):
    def initParameters(self):
        self.mask_dtype = 'float64'


160 161 162 163 164 165 166 167 168 169 170 171
class TestSequenceMaskOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            input_data = np.random.uniform(1, 5, [4]).astype("float32")

            def test_Variable():
                # the input must be Variable
                fluid.layers.sequence_mask(input_data, maxlen=4)

            self.assertRaises(TypeError, test_Variable)


Q
qingqing01 已提交
172 173
if __name__ == '__main__':
    unittest.main()