hybrid_parallel_pp_layer.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16 17
import numpy as np
from paddle.distributed import fleet
18
from paddle.nn import Sequential
19 20 21 22
import paddle.nn as nn
from paddle.fluid.dygraph.layers import Layer
from paddle.distributed.fleet.meta_parallel import LayerDesc, PipelineLayer
import paddle.nn.functional as F
23 24 25 26


class ReshapeHelp(Layer):
    def __init__(self, shape):
27
        super().__init__()
28 29 30 31
        self.shape = shape

    def forward(self, x):
        return x.reshape(shape=self.shape)
32 33 34 35


class AlexNet(Layer):
    def __init__(self, num_classes=10):
36
        super().__init__()
37
        self.features = Sequential(
38
            nn.Conv2D(1, 64, kernel_size=11, stride=4, padding=5),
39
            nn.ReLU(),
40 41
            nn.MaxPool2D(kernel_size=2, stride=2),
            nn.Conv2D(64, 192, kernel_size=5, padding=2),
42
            nn.ReLU(),
43 44
            nn.MaxPool2D(kernel_size=2, stride=2),
            nn.Conv2D(192, 384, kernel_size=3, padding=1),
45
            nn.ReLU(),
46
            nn.Conv2D(384, 256, kernel_size=3, padding=1),
47
            nn.ReLU(),
48
            nn.Conv2D(256, 256, kernel_size=3, padding=1),
49
            nn.ReLU(),
50 51
            nn.MaxPool2D(kernel_size=2, stride=2),
        )
52 53

        self.reshape_layer = ReshapeHelp(shape=[-1, 256])
54 55 56 57 58
        self.classifier = nn.Linear(256, num_classes)
        self.loss_fn = nn.loss.CrossEntropyLoss()

    def forward(self, x, y):
        x = self.features(x)
59
        x = self.reshape_layer(x)
60 61 62 63 64 65 66
        x = self.classifier(x)
        return self.loss_fn(x, y)


class AlexNetPipe(AlexNet):
    def to_layers(self):
        feat = [self.features[i] for i in range(len(self.features))]
67
        loss_fn = [self.reshape_layer, self.classifier]
68 69 70 71 72 73 74 75
        feat.extend(loss_fn)
        return feat


class AlexNetPipeDesc(PipelineLayer):
    def __init__(self, num_classes=10, **kwargs):
        self.num_classes = num_classes
        decs = [
76
            LayerDesc(nn.Conv2D, 1, 64, kernel_size=11, stride=4, padding=5),
77
            LayerDesc(nn.ReLU),
78 79
            LayerDesc(nn.MaxPool2D, kernel_size=2, stride=2),
            LayerDesc(nn.Conv2D, 64, 192, kernel_size=5, padding=2),
80
            F.relu,
81 82
            LayerDesc(nn.MaxPool2D, kernel_size=2, stride=2),
            LayerDesc(nn.Conv2D, 192, 384, kernel_size=3, padding=1),
83
            F.relu,
84
            LayerDesc(nn.Conv2D, 384, 256, kernel_size=3, padding=1),
85
            F.relu,
86
            LayerDesc(nn.Conv2D, 256, 256, kernel_size=3, padding=1),
87
            F.relu,
88 89
            LayerDesc(nn.MaxPool2D, kernel_size=2, stride=2),
            LayerDesc(ReshapeHelp, shape=[-1, 256]),
90 91
            LayerDesc(nn.Linear, 256, self.num_classes),  # classifier
        ]
92
        super().__init__(layers=decs, loss_fn=nn.CrossEntropyLoss(), **kwargs)
93 94 95 96 97


class TestPipeLayerAPI(unittest.TestCase):
    def setUp(self):
        strategy = fleet.DistributedStrategy()
98
        self.pipeline_parallel_size = 2
99 100 101
        strategy.hybrid_configs = {
            "dp_degree": 1,
            "mp_degree": 1,
102
            "pp_degree": self.pipeline_parallel_size,
103 104 105 106 107
        }
        fleet.init(is_collective=True, strategy=strategy)
        self.hcg = fleet.get_hybrid_communicate_group()

    def test_pipelayer_desc(self):
108
        pipe_model = AlexNetPipeDesc(num_stages=self.pipeline_parallel_size)
109 110 111 112
        np.testing.assert_array_equal(len(pipe_model.parameters()), 6)

    def test_pipelayer_sequential(self):
        init_net = AlexNetPipe()
113 114 115 116 117
        pipe_model = PipelineLayer(
            layers=init_net.to_layers(),
            num_stages=self.pipeline_parallel_size,
            loss_fn=nn.CrossEntropyLoss(),
        )
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        stage_id = self.hcg.get_stage_id()
        init_parameters = init_net.parameters()
        pipe_parameters = pipe_model.parameters()
        part_number = len(init_parameters) // 2

        if stage_id == 0:
            for idx in range(part_number):
                param_a = init_parameters[idx]
                param_b = pipe_parameters[idx]
                np.testing.assert_array_equal(param_a.name, param_b.name)
                np.testing.assert_allclose(param_a.numpy(), param_b.numpy())

        elif stage_id == 1:
            for idx in range(part_number):
                param_a = init_parameters[idx + part_number]
                param_b = pipe_parameters[idx]

                np.testing.assert_array_equal(param_a.name, param_b.name)
                np.testing.assert_allclose(param_a.numpy(), param_b.numpy())


if __name__ == '__main__':
    unittest.main()